Easy as ABCs: Unifying Boltzmann Q-Learning and Counterfactual Regret
Minimization

Anonymous submission

Abstract

We propose ABCs (Adaptive Branching through Child
stationarity), a best-of-both-worlds algorithm combining
Boltzmann Q-learning (BQL), a classic reinforcement learn-
ing algorithm for single-agent domains, and counterfactual
regret minimization (CFR), a central algorithm for learning
in multi-agent domains. ABCs adaptively chooses what frac-
tion of the environment to explore each iteration by measur-
ing the stationarity of the environment’s reward and transition
dynamics. In Markov decision processes, ABCs converges to
the optimal policy with at most an O(A) factor slowdown
compared to BQL, where A is the number of actions in the
environment. In two-player zero-sum games, ABCs is guar-
anteed to converge to a Nash equilibrium (assuming access
to a perfect oracle for detecting stationarity), while BQL has
no such guarantees. Empirically, ABCs demonstrates strong
performance when benchmarked across environments drawn
from the OpenSpiel game library and OpenAl Gym and ex-
ceeds all prior methods in environments featuring partial sta-
tionarity.

1 Introduction

The ultimate dream of reinforcement learning (RL) is a gen-
eral algorithm that can learn in any environment. Neverthe-
less, present-day RL often requires assuming that the envi-
ronment is stationary (i.e. that the transition dynamics and
rewards do not change over time). When this assumption
is violated, many methods, such as Boltzmann Q-learning,
fail to learn good policies or even converge at all, both in
theory and in practice (Zinkevich et al. 2008; Laurent and
Laétitia Matignon 2011; Brown et al. 2020).

Meanwhile, breakthroughs in no-regret learning, such
as counterfactual regret minimization (CFR) (Zinkevich
et al. 2008), have led to tremendous progress in imperfect-
information, multi-agent games such as Poker and Diplo-
macy (Moravcik et al. 2017; Brown and Sandholm 2018,
2019b; Meta Fundamental AI Research Diplomacy Team
(FAIR) et al. 2022; Bakhtin et al. 2023). Such algorithms
are able to guarantee convergence to Nash equilibria in
two-player zero-sum games, which are typically not MDPs.
However, CFR has poor scaling properties due to the need to
perform updates across the entire game tree at every learn-
ing iteration, as opposed to only across a single trajectory
like BQL. As a result, CFR algorithms are typically substan-
tially less efficient than their RL counterparts when used on

stationary environments such as MDPs. While Monte Carlo
based methods such as MCCFR have been proposed to help
alleviate this issue (Lanctot et al. 2009), CFR algorithms re-
main impractical in even toy reinforcement learning envi-
ronments, such as Cartpole or the Arcade Learning Environ-
ment (Sutton and Barto 2018; Bellemare et al. 2013).

We propose ABCs (Adaptive Branching through Child
stationarity), a best-of-both-worlds approach that combines
the strengths of both Boltzmann Q-Learning (BQL) and
CFR to create a single, versatile algorithm capable of learn-
ing in both stationary and nonstationary environments. The
key insight behind ABCs is to dynamically adapt the algo-
rithm’s learning strategy by quantifying the stationarity of
the environment. If an information state (a set of observa-
tionally equivalent states) is deemed to be approximately
stationary, ABCs performs a relatively cheap BQL-like up-
date. On the other hand, if it is nonstationary, ABCs ap-
plies a more expensive CFR-like update to preserve con-
vergence guarantees. This selective updating mechanism en-
ables ABCs to exploit the efficiency of BQL in stationary
settings while maintaining the robustness of CFR in non-
stationary environments, only exploring the game tree more
heavily when necessary.

The precise notion of stationarity that ABCs tests for is
child stationarity, a weaker notion than Markovian station-
arity. In an MDP, the reward and transition functions must
remain stationary for the full environment, regardless of the
policy chosen by the agent. Instead, child stationarity iso-
lates the transition associated with a specific infostate s and
action a and requires only that this transition remain station-
ary with respect to the policies encountered over the course
of learning. We prove that a full CFR update at informa-
tion states and actions where child stationarity is satisfied
is unnecessary to guarantee convergence to equilibria (or to
the optimal policy in a single-agent environment), and that
a cheaper BQL update suffices, even if the environment as
a whole is nonstationary. In MDPs, ABCs asymptotically
converges to the optimal policy within a factor of O(A) of
the number of updates of BQL, where A is the maximum
number of available actions at an infostate. In two-player
zero-sum games, ABCs converges to a Nash equilibrium,
even while BQL lacks such guarantees, if given access to
a perfect oracle for detecting child stationarity. We bench-
mark ABCs on Cartpole, Leduc poker and Kuhn poker, and

show that ABCs has performance comparable to BQL on
stationary environments and to CFR on nonstationary ones.
Moreover, in environments with both stationary and nonsta-
tionary elements, we show that ABCs can outperform both
methods.

Related Work

Discovering general algorithms capable of learning in broad
environments is a common theme in RL. For example,
DQN (Mnih et al. 2015) and its successors (Wang et al.
2016; Bellemare, Dabney, and Munos 2017; Hessel et al.
2018) are capable of obtaining human level performance on
a test suite of games drawn from the Arcade Learning En-
vironment, and algorithms such as AlphaZero (Silver et al.
2017) are capable of achieving superhuman performance on
perfect information games such as Go, Shogi, and Chess.
However, such algorithms still fail on multi-agent imper-
fect information settings such as Poker (Brown et al. 2020).
More recently, several algorithms such as Player of Games
(PoG) (Schmid et al. 2021), REBEL (Brown et al. 2020),
and MMD (Sokota et al. 2023) have been able to simultane-
ously achieve reasonable performance on both perfect and
imperfect information games. However, unlike ABCs, none
of these algorithms adaptively branch information states
based on stationarity measurements. As such, they can nei-
ther guarantee performance comparable to their reinforce-
ment learning counterparts in MDPs nor efficiently allocate
resources in environments which are partially stationary, as
ABCs is able to do.

2 Preliminaries
Markov Decision Processes

Classical single-agent RL assumes that the learning envi-
ronment is a Markov Decision Process (MDP). An MDP
is defined via a tuple (S, A, T, R,v). S and A are the set
of states and actions, respectively. The state transition func-
tion, T'(s' | s,a), defines the probability of transitioning to
state s’ after taking action « at state s. R(r | s, a,s’) is the
reward function, which specifies the reward for taking action
a at state s, given that we transition to state s’. Importantly,
in an MDP, both the transition and the reward function are
assumed to be stationary. v € [0,1] is the discount factor
determining the importance of future rewards relative to im-
mediate rewards. In an episodic MDP, the agent interacts
with the environment across each of separate episodes via a
policy, which is a function 7 : § — AA, mapping states
to probabilities over valid actions. In a Partially Observable
Markov Decision Process (POMDP), the tuple contains an
additional element . In a POMDP, the agent only observes
information states S while the true hidden states H of the
world remain unknown. The transition and reward dynamics
of the environment follow an MDP over the hidden states
‘H, but the agent’s policy 7 : S — AA must depend on
the observed infostates rather than hidden states. Neverthe-
less, there are standard methods for reducing POMDPs into
MDPs (see discussion of infostates, below) (Shani, Pineau,
and Kaplow 2013).

Finite Extensive-Form Games

While MDPs and POMDPs model a large class of single-
agent environments, the stationarity assumption can easily
fail in multi-agent environments. Specifically, from a sin-
gle agent’s perspective, the transition and reward dynamics
are no longer fixed as they now depend on the other agents
who are also learning. To capture these multi-agent environ-
ments, we cast our environment as a finite, potentially imper-
fect information, extensive-form game with perfect recall.

In defining this, we have a set of M players (or agents),
and an additional chance player, denoted by ¢, whose moves
capture any potential stochasticity in the game. There is a
finite set H of possible histories/hidden states, correspond-
ing to a finite sequence of states encountered and actions
taken by all players in the game. Let h = h' denote that h
is a prefix of A/, as sequences. The set of terminal histories,
Z C M, is the set of histories where the game terminates.
For each history h € H, we let ;(h) denote the reward ob-
tained by player i upon reaching history h.! The total utility
in a given episode for player ¢ after reaching terminal his-
tory z € Zis ui(z) = 3., . 7'ri(ht), where h; denotes
the ¢ + 1st longest prefix of z (i.e., t indexes a step within
an episode). Let u; (h, h') denote the total utility for player ¢
when reaching history h’, starting from history h. Many of
the guarantees in this paper focus on two-player zero-sum
games, which have the additional property that the sum of
the utility functions at any z € Z for the two players is guar-
anteed to be 0.

To model imperfect information, we define the set of in-
Sostates S as a partition of the possible histories . Let S(h)
denote the information states (abbreviated infostates) corre-
sponding to history h. There is a player function P : S —
{1,..., M} U {c} that maps infostates to the player whose
turn it is to move. Each infostate s € S is composed of states
that are observationally equivalent to the player P(s) whose
turn it is to play. As is standard, we assume perfect recall in
that players never forget information obtained through prior
states and actions (Zinkevich et al. 2008; Brown and Sand-
holm 2018; Moravcik et al. 2017; Celli et al. 2020).

Let A(s) denote the set of possible actions available to
player P(s) at infostate s. We denote the policy of player
iasm S — AAandlet 71 = {m, - 7wy} denote
the joint policy. Let (n},7_;) = {m, - 7}, m,} de-
note the policy where all players except player ¢ play ac-
cording to 7 and player ¢ plays 7. Let H,(s) denote the
distribution of true hidden states corresponding to infos-
tate s, assuming all players play according to joint pol-
icy m. We use T:(h' | h,a) to denote the probability that
R’ is the next hidden state after player ¢ plays action a
under true hidden state h. We can similarly define the
transition probability to infostate s’ from hidden state h
as Tr(s' | hoa) = D pcpy, o) LS(W) = ") Tr (R | h,q),
and the transition probabilities from infostate to infostate
as T (s" | s,a) = gy, (s)[Tx (5" | h,a)]. Analogously, let

!'Using the discount factor , we could equivalently collapse all
intermediate rewards into the terminal reward. However, as ABCs
makes use of these intermediate rewards during learning, we opt
not to do so here.

R+ (7| s,a,s") denote the probability of obtaining immedi-
ate reward r after taking action a at infostate s under joint
policy 7 after transitioning to state s’. In order for the above
transitions to always be well defined, we will assume that all
policies are fully mixed, in that 7(a | s) > 0 for all valid
actions a and all infostates s.

3 Unifying Q-Learning and Counterfactual
Regret Minimization

The following notation will be useful for describing both
BQL and CFR. Let n™(h) be the probability of reaching
history h if all players play policy 7 from the start of
the game. Let n”™,(h), nT (k) denote the contribution of all
players except player ¢ and the contribution of player
to this probability respectively. Analogously, let ™ (s) =
>, 1(S(h) = h)n" (h) be the probability of reaching infos-
tate s and 7™ (h, h") be the probability of reaching history A’
starting from history h. Since all policies are fully mixed,
these probabilities are each guaranteed to be strictly posi-
tive. Let Z; denote the set of all (h, z) such that S(h) = s
and z € Z is a possible terminal history when starting from
h.

Boltzmann Q-Learning

Boltzmann Q-learning (BQL) is a variant of the standard Q-
learning algorithm, where Boltzmann exploration is used as
the exploration policy. Formally, we define the value of a
state V' and the () value of an action at that state as:

" (h)

Vi(s) = -
(h’;zﬁ n™(s)
Q" (s,a) = E

s'~Tr(s']s,a)
r~Rr(r|s,a,s")

0™ (hy 2)u;(h, 2)
V()

where the i in the definition of Q™ (s, a) refers to the player
who plays at state s.

We adapt BQL to the multi-agent setting as follows. At
each iteration, BQL first freezes the policies of each agent.
It then samples a single trajectory for each agent. These tra-
jectories take the form of (s, a,r,s’) tuples, recording the
reward 7 and new infostate s’ observed after taking action
a at infostate s. Q-values are then updated for each (s,a)
pair in the trajectory using a temporal difference (TD) up-
date Q(s,a) + (1 —@)Q(s,a)+ a(r+ymax, Q(s',a’)),
where « denotes the learning rate. These average Q-values

are stored, and at the end of each iteration n, a new joint

policy 7" *1(s,a) = Za/zpégégg()é 22) 777 is computed by

applying Boltzmann exploration on these Q-values, where 7
is the temperature parameter. While BQL is known to con-
verge to the optimal policy in MDPs and in perfect informa-
tion games (given a suitable temperature schedule) (Cesa-
Bianchi et al. 2017; Singh et al. 2000), it fails to find the
Nash equilibria in imperfect-information multi-agent games
such as Poker (Brown et al. 2020).

Counterfactual Regret Minimization

Counterfactual regret minimization (CFR) is a popular
method for solving imperfect-information extensive form

games and is based on the notion of minimizing counter-
factual regrets. The counterfactual value for a given infos-
tate is given by v (s) = 3_j, .yez, 17 (M)n" (h, 2)ui(h, 2).
The counterfactual regret for not taking action a at infostate
s is thus given by 7™ (s,a) = v; "7 (s) — v](s), where
i = P(s) and 7(5_,4) is identical to policy 7 except ac-
tion a is always taken at infostate s. Notice that because
nT(s) = nI(h) (due to the assumption of perfect recall),
the counterfactual values are simply the standard RL value
functions normalized by the opponents’ contribution to the

probability of reaching s; that is, v](s) = ;/;W—((SS))Z This
was first pointed out by (Srinivasan et al. 2018). As with
multi-agent BQL, at each iteration, we freeze all agents’
policies before traversing the entire game tree and comput-
ing the counterfactual regrets for each infostate, action pair.
A new current policy 7"*1 is then computed using a regret
minimizer, typically regret matching (Hart and Mas-Colell
2000) or Hedge (Arora, Dekel, and Tewari 2012) on the
cumulative regrets R"(s,a) = Y. 7™ (s,a), and the pro-
cess continues. A learning procedure has vanishing regret if
limpy_soo %RN(S, a) = 0 for all s,a. In two player, zero-
sum games, (Zinkevich et al. 2008) prove that CFR has van-
ishing regret, and by extension, that the average policy con-
verges to a Nash equilibrium of the game. In general games,
computing a Nash equilibrium is known to be computation-
ally hard (Daskalakis, Goldberg, and Papadimitriou 2009;
Chen, Deng, and Teng 2009), but CFR still guarantees con-
vergence to a slightly weaker solution concept known as the
coarse-correlated equilibrium (Morrill et al. 2021).

External Sampling MCCFR with Hedge

External sampling MCCFR (ES-MCCFR) is a popular vari-
ant of CFR which uses sampling. While vanilla CFR com-
putes counterfactual regrets for the entire game tree at each
iteration, Monte Carlo CFR (MCCFR) approaches rely on
sampling to get unbiased estimates of these regrets (Lanctot
et al. 2009). For each player ¢, ES-MCCFR samples a single
action for every infostate which players other than ¢ act on,
but explores all actions for player ¢. Let W denote the set
of terminal histories reached during this sampling process.
For any infostate s, let h(s) denote the corresponding his-
tory that was reached during exploration (there can only be
one due to perfect recall). For each visited infostate s, the
sampled counterfactual regret, 7;(s,a) = ¥, “7(s,a) —
07 (s,a) = 3 ew wilh, 2)(nf (h(s"), 2) — nf (h(s), 2)), is
added to the cumulative regret, where s’ is the infostate
reached after taking action a at infostate s. After this pro-
cess has been completed for each player, a new joint policy
is computed using Hedge on the new cumulative regrets, and
the procedure continues. Under Hedge, the joint policy at

ntuitively, the counterfactual regret upper bounds how much
an agent could possibly “regret” not playing action a at infostate s
if she modified her policy to maximize the probability that state s is
encountered. As such, the normalization constant excludes player
i’s probability contribution to reaching s under 7 because she is
assumed to be playing an alternative policy that is counterfactually
trying to reach infostate s.

R (s,0)/mn
Palca(s) eRM (") /Tn
where 7, is a temperature hyperparameter. As the Hedge re-
gret minimizer is a softmax, it is invariant to any additive
constants in the exponent. This means that we can replace
the sampled counterfactual regrets with the sampled coun-
terfactual values, i.e., 07 (s,a) = >y wi(2) 0] (h(s'), 2),
and similarly with the cumulative regrets.

episode n+1 is given by 71 (s, a) =

BQL vs. CFR

The most important difference between CFR and BQL is
in regard to which infostates are updated at each itera-
tion of learning. By default, BQL only performs updates
along a single trajectory of encountered infostates (“‘trajec-
tory based”). In a game of depth D, this means that there will
be at most O(D) updates per iteration. By contrast, CFR and
most of its variants are typically not trajectory-based learn-
ing algorithms because many infostates that are updated are
not on the path of play. In particular, CFR (Zinkevich et al.
2008) requires performing counterfactual value updates at
every infostate, which can require up to O(AP”) updates per
iteration. While MCCFR reduces this by performing Monte-
Carlo updates, in practice variants such as ES-MCCEFR still
require making updates to infostates that grows in number
exponentially in the depth of the tree.

Despite the differences between BQL and CFR, the two
algorithms are intimately linked. (Brown et al. 2019, Lemma
1) first pointed out that the sampled counterfactual values in
ES-MCCFR have a strong connection to the notion of Q-
values, in that the sampled counterfactual values 07 (s, a)
have an alternative interpretation as Monte-Carlo based es-
timates of the Q-value Q™ (s,a). Thus, ES-MCCFR with
Hedge has a gradient update that ends up being very similar
to BQL, with two exceptions. Firstly, BQL estimates its Q-
values using bootstrapping, thus computing the average Q-
value across all previous policies whereas ES-MCCFR uses
a Monte-Carlo update and thus updates based on the current
policy of all players. Secondly, BQL chooses a policy based
on a softmax over the average Q-values, while CFR(Hedge)
uses a softmax over cumulative Q-values. As not every ac-
tion is tested in BQL, the average Q-values may be based on
a different number of samples for each action, making it dif-
ficult to convert average Q-values into cumulative Q-values.

4 Learning our ABCs

As described in Section 3, while the updates that
CFR(Hedge) and BQL perform at each infoset are quite
similar, BQL learns over trajectories, whereas CFR expands
most (if not all) of the game tree at every infostate. This ex-
ploration is necessary in nonstationary environments where
the Q-values may change over time but wasteful in station-
ary environments. As a concrete example, consider the fol-
lowing game. Half of the game is comprised of a standard
game of poker, and half of the game is a “dummy” game
identical to poker except that the payoff is always 0. In the

3In theory, variants such as OS-MCCFR can learn with merely
O(D) updates per iteration, but the variance of such methods is
typically too high for practical usage.

“poker” subtree, BQL will fail to converge because this sub-
tree is not an MDP. However, on the “dummy” subtree of
the game, CFR will continue to perform full updates and
explore the entire subtree, even though simply sampling tra-
jectories on this “dummy” subtree would be sufficient for
convergence.

What if we could formulate an algorithm that could itself
discover when it needed to expand a child node, and when
it could simply sample a trajectory? The hope is that this
algorithm could closely match the performance of RL al-
gorithms in stationary environments while retaining perfor-
mance guarantees in nonstationary ones. Moreover, one can
easily imagine general environments containing elements of
both — playing a game of Poker followed by a game of Atari,
for example — where such an algorithm could yield better
performance than either CFR or BQL.

Child Stationarity

We now define the important concept of child stationarity,
which is a relaxation of the standard Markov stationarity re-
quirement. Let o : AIl denote a distribution over joint poli-
cies.

Definition 4.1 (Child stationarity). An infostate s and
action a satisfy child stationarity with respect to dis-
tributions over joint policies o and o' if and only
if Ereo|Tn(h' |s,a)] = Erpeo[Tn(h |s,a)] and
Erno|[Rr(r] s,a,8)] = Exmo[Re(r | s,a,s")], where s’
denotes the infostate observed after playing a at s.

An infostate action pair, (s, a), satisfies child stationarity
for policy distributions o and ¢ if the local reward and state
transition functions remain stationary despite a change in
policy distribution, and even if other portions of the environ-
ment, possibly including ancestors of s, are nonstationary.
Importantly, the transition function must remain constant
with respect to the true, hidden states and not merely the
observed infostates.* By definition, an MDP satisfies child
stationarity for all infostates s and actions a with respect to
all possible distributions over joint policies o, o”.

The utility of child stationarity can be seen as follows.
While MDPs and perfect information games can be decom-
posed into subgames that are solved independently from
each other (Tesauro et al. 1995; Silver et al. 2016; Sutton
and Barto 2018), the same is not true for their imperfect-
information counterparts (Brown et al. 2020). Finding tran-
sitions that satisfy child stationarity allows for natural de-
compositions of the environment that can be solved in-
dependently from the rest of the environment. As such,
child stationarity forms a core reason for why ABCs is
able to unify BQL and CFR into a single algorithm. De-
fine G?(s,a) as a game whose initial hidden state is drawn
from E cq [T (h' | 5,a)] and then played identically to G,
the original game, from that point onward. G’ (s, a) is anal-
ogous to the concept of Public Belief States introduced by
ReBeL (Brown et al. 2020, Section 4).

“We give a more detailed discussion of the similarities and dif-
ferences between child stationarity and Markovian stationarity in
Appendix B.

Algorithm 1 Returns True if s, a is not child stationary.

Algorithm 2 ABCs

Precondition: infostate s, action a, child hidden states hq.
(states following (s, a)), total episodes N, significance
level ag > 0.

function DETECT(s,a, 1.5, h1.n, s)
X1+ {rp,hp|nel---|N/2|}
Xo«{rp,hyn |n€|N/2]+1---N}
pval < ChiSquared(Xy, X5)

return pval < oy

Theorem 4.2. If s, a satisfy child stationarity with respect
to 0,0, then G°(s,a) = G (s,a). Furthermore, if 7™ is a
Nash equilibrium of G (s,a), then 7 is also a Nash equi-
librium of G (s, a).

Proof. By the definition of child stationarity,
Erco[Tn(h | s,a)] = Ercor [T (R | s,a)]. Thus, G (s, a)
and G (s,a) are informationally equivalent, as all players
have the same belief distribution over hidden states at
the beginning of the game and will thus have identical
equilibria. O

Detecting Child Stationarity

How can we measure child stationarity in practice? Notice
that the definition only requires that the transition and re-
ward dynamics stay fixed with respect to two particular dis-
tributions of joint policies, not all of them. Let 7wy, 7o, - - - v
be the policies used by our learning procedure for each itera-
tion of learning from 1 - - - N. Define o as the uniform dis-
tribution over {7y - - - 7 y/2 } and o' as the uniform distri-
bution over {7 n/2|41 - - - 7N }. Atiteration N, Algorithm 1
directly tests child stationarity with respect to distributions
over joint policies oY, 0¥ as follows: for each infostate s
and action a, it keeps track of the rewards and true hid-
den states that follow playing action a at s. Then, it runs
a Chi-Squared Goodness-Of-Fit test (Pearson 1900) to de-
termine whether the distribution of true hidden states has
changed between the first and second half of training. We
adopt child stationarity as the null hypothesis. While Algo-
rithm 1 is not a perfect detector, Theorem 4.3 shows that in
the limit, Algorithm 1 will asymptotically never claim that
a given s, a, 0 4, 0 p satisfies child stationarity when it does
not, assuming (s, a) is queried infinitely often. However, the
Chi Squared test retains a fixed rate of false positives given
by the significance level o, so Algorithm 2 will incorrectly
reject the null hypothesis of child stationarity with some pos-
itive probability.

Theorem 4.3. As |X1|,|X2| — oo, the probability that Al-

gorithm 1 falsely claims s, a satisfies child stationarity when
it does not goes to 0.

Proof. This statement is directly implied by the fact that the
Chi-Squared Goodness-of-Fit test guarantees that the Type
II error vanishes in the limit (Pearson 1900). O

Precondition: (), CNT initialized to 0, discount factor ~,
total episodes V. Initial observation and hidden states
S0, ho. H = @. Significance value p, exploration e

forn < 1to N do

ABCs(hg, s0,Q,7,n, ag, H,p, €) > ag is null
function GETCHILD(h, s, a, T, @, y)

Sample b/, 8" ~ T™(h' | h,a),S(R)

Sample r ~ R™(r | s,a,s’)

a* < arg max, Q(s',a)

Vo < (r+9Q(s',a%)) — Q(s,a)

return i/, s, a*, V4

function ABCS(h, s, @, 7,1, Gopt, H, D, €)
if h is terminal then return 0
7" softmax(Q(s,*), 7 = 1/(1, - CNT(s)))
CNT(s) + CNT(s) + 1
Sample a¢rq; from 77 (s) with e-exploration
for a € A(s) do
B,s', a* Vs, < GetChild(h, s,a, 7", Q,7)
Append r, b/ to H(s,a)
if DETECT(s, a, H(s,a),p) OR a = a;,,; then
vS,ﬂ* A ABCS(h/a 5/7 Q7 s t7 (l*, Hapv E)
if s is not stationary then
Vs ¢ Vsa+CNT(s) - Vg g

Q(s,a) «+ Q(s,a) + Cﬁ(s)vs,a
Qopt < arg max Q(s, *)
return V

$,Q0pt

The ABCs Algorithm

We are now ready to learn our ABCs. At a high level, ABCs
chooses between a BQL update and a CFR update for each
Q(s, a) value based on whether or not it satisfies child sta-
tionarity with respect to the joint policies encountered over
the course of training. One can view ABCs from two equiva-
lent perspectives. From one perspective, ABCs runs a variant
of ES-MCCFR, except that at stationary infostates, where
it is unnecessary to run a full CFR update, it defaults to a
cheaper BQL update. Alternatively, one can view ABCs as
defaulting to a variant of BQL until it realizes that an in-
fostate is too nonstationary for BQL to converge. At that
point, it backs off to more expensive CFR style updates. We
provide the formal description of ABCs in Algorithm 2. In
the multi-agent setting, ABCs freezes all players’ policies at
the beginning of each learning iteration and then runs inde-
pendently for each player, exactly as multi-agent BQL and
ES-MCCFR does.

Where ABCs Runs Updates As described in Section 3,
one major difference between BQL and ES-MCCEFR is the
number of infostates each algorithm updates per learning
iteration. While BQL updates only infostates encountered
along a single trajectory, ABCs adaptively adjusts the pro-
portion of the game tree it expands by measuring child sta-

tionarity at each (s,a). Concretely, at every infostate en-
countered (regardless of its stationarity), ABCs chooses an
action ayrq; from its policy (with e-exploration) and recur-
sively runs itself on the resulting successor state s’. For all
other actions a’ # a, it tests whether the tuple (s, a’) sat-
isfies child stationarity. Unless the null is rejected, it prunes
all further updates on that subtree for this iteration. Other-
wise, when the detector returns True, it also recursively runs
on the successor state sampled from T'(s’ | s,a’). As such,
if all actions a fail the child stationarity test, then ABCs will
expand all child nodes, just like ES-MCCFR, but if the en-
vironment is an MDP and all s, a satisfy child stationarity
(according to the detector), then ABCs will only expand one
child at each state and thus approximate BQL style trajec-
tory updates. With sufficient e-exploration (and because at
least one action ay,.q; Will be expanded for each infostate s),
ABCs satisfies the requirement of Theorem 4.3 that every
infostate s will be visited infinitely often in the limit.

Q-value updates In terms of the actual Q-value update
that ABCs performs, recall that in Section 3, we describe
two differences between BQL and ES-MCCFR, namely that
1) ES-MCCFR updates its Q-values based on the current
policy (while BQL performs updates based on the average
policy), and 2) ES-MCCFR chooses its policy as a func-
tion of cumulative Q-values, whereas BQL uses average Q-
values. ABCs unifies these updates, as follows. To determine
which update to make, ABCs measures the level of child
stationarity for a given (s, a) pair, as it does when choosing
which infostates to update. If (s,a) satisfies child station-
arity, then ABCs does a regular BQL update. If not, ABCs
adds a nonstationarity correction factor CNT(s') - V. o to
the Q-value update, correcting for the difference between the
instantaneous Q-values sampled via Monte-Carlo sampling
and the average bootstrapped Q-values. This correction ex-
actly recovers the update function of MAX-CFR, a variant
of ES-MCCEFR described in more detail in Appendix C.

In regard to cumulative vs. average Q-values, we force
ABCs to test each action upon reaching an infostate, and
thus update Q(s, a) for all a. This allows us to set the tem-
perature to recover a scaled multiple of the cumulative Q-
values. Specifically, by setting a temperature of W,
where C NT'(s) counts the number of visits to s, we recover
a softmax over the cumulative Q-values scaled by 7, just
like with CFR(Hedge). BQL is well known to converge to
the optimal policy in an MDP as long as we are greedy in
the limit and visit every state, action pair infinitely often,
which is guaranteed with an appropriate choice of 7,, and
e-schedule (Singh et al. 2000; Cesa-Bianchi et al. 2017).

Convergence Guarantees We formally prove the follow-
ing theorems describing the performance of an idealized
form of ABCs in MDPs and two-player zero-sum games.
Theorem 4.4 proves that a minor variant of ABCs finds a
Nash equilibrium in a two-player zero-sum game (assum-
ing access to a perfect oracle). Additionally, Theorem 4.5
proves that ABCs converges no slower than an O(A) fac-
tor compared to BQL in an MDP without the assumption
of a perfect oracle and using only the detector described in
Section 4. This is possible because CFR updates will also

converge to the optimal policy in MDPs. The full proofs are
included in the supplementary material.

Theorem 4.4. Assume that Algorithm 2 tracks separate
Q% (s,a) and Q"' (s, a) values for stationary and
nonstationary updates and has access to a perfect oracle
for detecting child stationarity. Then, the average policy

limpy oo % 25:1 T in Algorithm 2 converges to a Nash
equilibrium in a two-player zero-sum game with high prob-
ability.

Theorem 4.5. Given an appropriate choice of significance
levels p, Algorithm 2 asymptotically converges to the opti-
mal policy with only a worst-case O(A) factor slowdown
compared to BOL in an MDP, where A is the maximum num-
ber of actions available at any infoset in the game.

In our practical implementation of ABCs, we make sev-
eral simplifications compared to the assumptions required in
theory. Firstly, as described in Algorithm 2, we only track
a single Q-value for both stationary and nonstationary up-
dates. Secondly, we use a constant significance value for all
infostates. Finally, we only perform the stationarity check
with probability 0.05 at each iteration, significantly reducing
the time spent on these checks. In our experiments, we find
that these changes simplify the implementation and yield
good results in practice. Additionally, since assuming access
to a perfect oracle is unrealistic in practice, we use the de-
tector described in Algorithm 1, which guarantees asymptot-
ically vanishing Type II error, but nevertheless retains some
probability of a false positive in the limit. Finally, we allow
for different temperature schedules for stationary and non-
stationary infostates.

S Experimental Results

We evaluate ABCs across single and multi-agent settings
drawn from both the OpenSpiel game library (Lanctot et al.
2019) and OpenAl Gym (Brockman et al. 2016), bench-
marking it against MAX-CFR, BQL (Sutton and Barto
2018), OS-MCCEFR (Lanctot et al. 2009), and ES-MCCFR
(Lanctot et al. 2009) (when computationally feasible). All
experiments with ABCs were run on a single 2020 Macbook
Air M1 with 8GB of RAM. We use a single set of hyperpa-
rameters and run across three random seeds, with 95% error
bars included. Hyperparameters and detailed descriptions of
the environments are given in Appendix E. Auxiliary exper-
iments with TicTacToe are also included in Appendix F. All
plots describe regret/exploitability, so a lower line indicates
superior performance.

Cartpole We evaluate ABCs on OpenAl Gym’s Cartpole
environment, a classic benchmark in reinforcement learn-
ing’. Figure 1a shows that ABCs performs comparably to
BQL and substantially better than OS-MCCFR. ES-MCCFR
is infeasible to run due to the large state space of Cartpole.

Weighted Rock Paper Scissors Weighted rock-paper-
scissors is a classic nonstationary environment in which

SWe modify Cartpole slightly to ensure that it satisfies the
Markovian property. See Appendix E for details.

Cartpole

ES-MCCFR
ABCs

Exploitabilty (log scale)

Kuhn Poker Cartpole + Leduc Poker

BQL
100 ABCs
0OS-MCCFR
75 MAX-CFR

ABCs 0S-MCCFR
254 0S-MCCFR 1074 BaL 254
04 BQL MAX-CFR 04
. . , . , . T : : ;
0 100000 200000 300000 400000 500000 0 100000 300000 400000 500000 0 1 2 3 4 5
Nodes Touched Nodes Touched Nodes Touched 1e6
(a) Cartpole (c) Kuhn Poker (e) Cartpole (Stacked Environment)
Weighted Rock-Paper-Scissors Leduc Poker
Cartpole + Leduc Poker
) ES-MCCFR
103 ABCs
5 OSMCCFR o ax1®
° BaL T o o)
3 1074 MAX-CFR & 10] ES-MCCFR 3
g 10 > @
K g ABCs 2
5 =y 0S-MCCFR <
3] 3 8aL £ 10
2 2 MAX-CFR k)
é‘ g % BQL
i & K
| 6x10" ABCs
10 08-MCCFR
- MAX-CFR
T T T T T T T T T T T 4x10 T T T
0.0 02 0.4 06 08 10 0 1 3 4 5 0 1 2 3 4 5
Nodes Touched 1e6 Nodes Touched 1e6 Nodes Touched 16
(b) Weighted RPS (d) Leduc Poker (f) Leduc (Stacked Environment)

Figure 1: ABCs matches the performance of BQL on stationary environments like Cartpole (a) and the performance of CFR
methods on non-stationary environemnts like weighted rock-paper-scissors (b), Kuhn poker (c), and Leduc poker(d). Addi-
tionally, on a partially stationary environment, ABCs outperforms both BQL and CFR, being the only algorithm capable of
efficiently solving both the Cartpole (e) and Leduc poker (f) portion of the stacked environment.

rock-paper-scissors is played, but there is twice as much re-
ward if a player wins with Rock. Figure 1b demonstrates that
while BQL fails to learn the optimal policy, ABCs performs
comparably to the standard CFR benchmarks.

Kuhn and Leduc Poker Kuhn and Leduc Poker are sim-
plified versions of the full game of poker which operate as
classic benchmarks for equilibrium finding algorithms. As
illustrated in Figures 1c and 1d, BQL fails to converge on
either Kuhn or Leduc Poker as they are not Markovian en-
vironments, and we show similar results for a wide variety
of hyperparameters in Appendix F. However, both ABCs
and MCCFR converge to a Nash equilibrium of the game,
with ABCs closely matching the performance of the stan-
dard MCCFR benchmarks.

A Partially Nonstationary Environment We also test
ABCs’s ability to adapt to a partially nonstationary environ-
ment, where its strengths are most properly utilized. Specifi-
cally, we consider a stacked environment, where each round
consists of a game of Cartpole followed by a game of Leduc
poker against another player. Figures le and 1f show that
BQL does not achieve the maximum score in this combined
game, failing to converge on Leduc poker. Although CFR
based methods are theoretically capable of learning both
games, MAXCFR wastes substantial time conducting un-
necessary exploration of the game tree in the larger Cartpole
setting, failing to converge on Leduc. OS-MCCEFR similarly
fails to learn either environment, though in this case, the is-
sue preventing convergence on Leduc relates more to vari-
ance induced by importance sampling on such a deep game

tree rather than unnecessary exploration. As such, ABCs
outperforms all CFR variants and BQL by better allocating
resources between the stationary and nonstationary portions
of the environment.

6 Conclusion

We have introduced ABCs, a unified algorithm which com-
bines aspects of both Boltzmann Q-Learning and Counter-
factual Regret Minimization. We prove that ABCs can si-
multaneously match the performance of BQL up to an O(A)
factor in MDPs while guaranteeing convergence to Nash
equilibria in two-player zero-sum games, assuming access
to a perfect oracle. To our knowledge, this is the first such al-
gorithm of its kind. Our experiments confirm the efficacy of
our child stationary detector and show that ABCs has com-
parable performance to BQL on stationary environments and
CFR on nonstationary ones, and is able to exceed both algo-
rithms in partially nonstationary domains.

We give a number of limitations of ABCs, which we leave
to future work. While Theorem 4.4 guarantees that ABCs
converges to a Nash equilibrium in two-player zero-sum
games, it both requires access to a perfect oracle and does
not bound the rate of convergence. Additionally, due to com-
putational restrictions, we benchmark ABCs only on rela-
tively small environments solvable using only tabular meth-
ods. For future work, we hope to scale ABCs to larger set-
tings such as the Arcade Learning Environment (Bellemare
etal. 2013) and larger games such as Go or Poker using func-
tion approximation and methods such as DQN (Mnih et al.
2013) or DeepCFR (Brown et al. 2019).

References

Arora, R.; Dekel, O.; and Tewari, A. 2012. Online Ban-
dit Learning Against an Adaptive Adversary: From Regret
to Policy Regret. In Proceedings of the 29th International
Coference on International Conference on Machine Learn-
ing, ICML’12, 1747-1754. Omnipress. ISBN 978-1-4503-
1285-1.

Arora, S.; Hazan, E.; and Kale, S. 2012. The multiplicative
weights update method: a meta-algorithm and applications.
Theory of Computing, 8(1): 121-164.

Bakhtin, A.; Wu, D. J.; Lerer, A.; Gray, J.; Jacob, A. P.; Fa-
rina, G.; Miller, A. H.; and Brown, N. 2023. Mastering the
Game of No-Press Diplomacy via Human-Regularized Re-
inforcement Learning and Planning. In ICLR.

Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A Dis-
tributional Perspective on Reinforcement Learning. In Pro-
ceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’ 17, 449—-458. JMLR.org.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-
gence Research, 47: 253-279.

Billingsley, P. 2012. Probability and Measure. John Wiley
& Sons.

Brafman, R. L.; and Tennenholtz, M. 2002. R-MAX-a gen-
eral polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research,
3(Oct): 213-231.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.

Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q. 2020.
Combining Deep Reinforcement Learning and Search for
Imperfect-Information Games. In Larochelle, H.; Ranzato,
M.; Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in
Neural Information Processing Systems, volume 33, 17057—
17069. Curran Associates, Inc.

Brown, N.; Lerer, A.; Gross, S.; and Sandholm, T. 2019.
Deep Counterfactual Regret Minimization. In International
Conference on Machine Learning, 793—802. PMLR.

Brown, N.; and Sandholm, T. 2018. Superhuman AI for
Heads-up No-Limit Poker: Libratus Beats Top Profession-
als. Science, 359(6374): 418-424.

Brown, N.; and Sandholm, T. 2019a. Solving Imperfect-
Information Games via Discounted Regret Minimization. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, 1829-1836.

Brown, N.; and Sandholm, T. 2019b. Superhuman Al for
Multiplayer Poker. Science, 365(6456): 885-890.

Celli, A.; Marchesi, A.; Farina, G.; and Gatti, N. 2020. No-
Regret Learning Dynamics for Extensive-Form Correlated
Equilibrium. Advances in Neural Information Processing
Systems, 33: 7722-T7732.

Cesa-Bianchi, N.; Gentile, C.; Lugosi, G.; and Neu, G. 2017.
Boltzmann Exploration Done Right. In Advances in Neural

Information Processing Systems, volume 30. Curran Asso-
ciates, Inc.

Chen, X.; Deng, X.; and Teng, S.-H. 2009. Settling the Com-
plexity of Computing Two-Player Nash Equilibria. Journal
of the ACM (JACM), 56(3): 1-57.

Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2009. The Complexity of Computing a Nash Equilibrium.
SIAM Journal on Computing, 39(1): 195-259.

Freund, Y.; and Schapire, R. E. 1997. A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting. In Journal of Computer and System Sciences, vol-
ume 55, 119-139.

Hart, S.; and Mas-Colell, A. 2000. A Simple Adaptive Pro-
cedure Leading to Correlated Equilibrium. Econometrica,
68(5): 1127-1150.

Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M. G.;
and Silver, D. 2018. Rainbow: Combining Improvements in
Deep Reinforcement Learning. In Proceedings of the The
Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18).

Hu, J.; and Wellman, M. P. 2003. Nash Q-Learning for
General-Sum Stochastic Games. J. Mach. Learn. Res.,
4(null): 1039-1069.

Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.;
Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls,
K.; Omidshafiei, S.; et al. 2019. OpenSpiel: A Framework
for Reinforcement Learning in Games.

Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo Sampling for Regret Minimization in
Extensive Games. In Advances in Neural Information Pro-
cessing Systems, volume 22. Curran Associates, Inc.

Laurent, G. J.; and Laé&titia Matignon, N. L. F.-P. 2011. The
world of Independent learners is not Markovian. Interna-
tional Journal of Knowledge-Based and Intelligent Engi-
neering Systems, 15(1): 55-64. 10.3233/KES-2010-0206.
hal-00601941.

Meta Fundamental AI Research Diplomacy Team (FAIR);
Bakhtin, A.; Brown, N.; Dinan, E.; Farina, G.; Flaherty, C.;
Fried, D.; Goff, A.; Gray, J.; Hu, H.; Jacob, A. P.; Komeili,
M.; Konath, K.; Kwon, M.; Lerer, A.; Lewis, M.; Miller,
A. H.; Mitts, S.; Renduchintala, A.; Roller, S.; Rowe, D.;
Shi, W.; Spisak, J.; Wei, A.; Wu, D.; Zhang, H.; and Zijlstra,
M. 2022. Human-Level Play in the Game of Diplomacy
by Combining Language Models with Strategic Reasoning.
Science, 378(6624): 1067-1074.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540): 529-533.

Morav¢ik, M.; Schmid, M.; Burch, N.; Lisy, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. DeepStack: Expert-Level Artificial Intelligence in
No-Limit Poker. Science, 356(6337): 508-513.

Morrill, D.; D’Orazio, R.; Sarfati, R.; Lanctot, M.; Wright,
J. R.; Greenwald, A.; and Bowling, M. 2021. Hindsight and
Sequential Rationality of Correlated Play.

OpenAlL 2019. OpenAl Five.
https://openai.com/blog/openai-five/.

Pearson, K. 1900. On the criterion that a given system of
deviations from the probable in the case of a correlated sys-
tem of variables is such that it can be reasonably supposed
to have arisen from random sampling. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of
Science, 50(302): 157-175.

Schmid, M.; Moravcik, M.; Burch, N.; Kadlec, R.; David-
son, J.; Waugh, K.; Bard, N.; Timbers, F.; Lanctot, M.; Hol-
land, Z.; Davoodi, E.; Christianson, A.; and Bowling, M.
2021. Player of Games. CoRR, abs/2112.03178.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347.

Shani, G.; Pineau, J.; and Kaplow, R. 2013. A survey
of point-based POMDP solvers. Autonomous Agents and
Multi-Agent Systems, 27: 1-15.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, L.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529(7587): 484-489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the Game of Go without Human
Knowledge. Nature, 550(7676): 354-359.

Singh, S.; Jaakkola, T.; Littman, M. L.; and Szepesvari,
C. 2000. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine learning, 38:
287-308.

Sokota, S.; D’Orazio, R.; Kolter, J. Z.; Loizou, N.; Lanc-
tot, M.; Mitliagkas, I.; Brown, N.; and Kroer, C. 2023. A
Unified Approach to Reinforcement Learning, Quantal Re-
sponse Equilibria, and Two-Player Zero-Sum Games. In
ICLR.

Srinivasan, S.; Lanctot, M.; Zambaldi, V.; Pérolat, J.; Tuyls,
K.; Munos, R.; and Bowling, M. 2018. Actor-critic pol-
icy optimization in partially observable multiagent environ-
ments. Advances in Neural Information Processing Systems,
31.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. Adaptive Computation and Machine

Learning Series. The MIT Press, second edition edition.
ISBN 978-0-262-03924-6.

Tammelin, O. 2014. Solving Large Imperfect Information
Games Using CFR+.

Tesauro, G.; et al. 1995. Temporal difference learning and
TD-Gammon. Communications of the ACM, 38(3): 58—68.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.;
Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard, V.;
Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre,
C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.;
Wiinsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lillicrap,
T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and Silver, D.
2019. Grandmaster Level in StarCraft IT Using Multi-Agent
Reinforcement Learning. Nature, 575(7782): 350-354.

von Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen, 100(1): 295-320.

Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanctot,
M.; and de Freitas, N. 2016. Dueling Network Architec-
tures for Deep Reinforcement Learning. In Proceedings of
the International Conference on Machine Learning (ICML),
1995-2003.

Zhang, H.; Lerer, A.; and Brown, N. 2022. Equilibrium
finding in normal-form games via greedy regret minimiza-
tion. Proceedings of the AAAI Conference on Artificial In-
telligence, 36(9): 9484-9492. Abstract Note: We extend
the classic regret minimization framework for approximat-
ing equilibria in normal-form games by greedily weigh-
ing iterates based on regrets observed at runtime. Theoreti-
cally, our method retains all previous convergence rate guar-
antees. Empirically, experiments on large randomly gener-
ated games and normal-form subgames of the AI benchmark
Diplomacy show that greedy weights outperforms previous
methods whenever sampling is used, sometimes by several
orders of magnitude.

Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2008. Regret Minimization in Games with Incomplete
Information. In Advances in Neural Information Processing
Systems, 1729-1736.

A Nash Equilibria and Exploitability

We formally describe a Nash equilibrium and the concept of
exploitability. Let 7 : S — A(A) denote the joint policy of
all players in the game. We assume that 7 has full support:
for all actions a € A(s), m(a | s) > 0. Let ¥ denote the
space of all possible joint policies, with >; defined accord-
ingly. Let u,;(7) denote the expected utility to player ¢ under
joint policy 7. A joint policy 7 is a Nash equilibrium of a
game if for all players i, m; € argmax, ¢y, ui(m, 7—;).
Similarly, policy 7 is an e-Nash equilibrium if for all players
i, wi () > max,ex, ui (7], T—;) — €.

In a two-player zero-sum game, playing a Nash equilib-
rium guarantees you the minimax value; in other words, it
maximizes the utility you receive given that your opponent
always perfectly responds to your strategy. Exploitability is
often used to measure the distance of a policy 7 from a Nash
equilibrium, bounding the worst possible losses from play-
ing a given policy. The total exploitability of a policy 7 is
given by >,y maxysex, ui(m), m—;) — u;(7). In a two-
player zero-sum game, the exploitability of a policy 7 is
given by max;s cx, uy (7], T2) + maxy ey, u2(m1, T3).

B Markov Stationarity vs. Child Stationarity

In this section, we highlight the relationship between
Markov stationarity and child stationarity. An MDP satisfies
child stationarity at all infostates and actions s, a and with
respect to all possible distributions over joint policies o, o’
(see Section 4).

Here we highlight an environment that does not satisfy
Markov stationarity but satisfies child stationarity. Consider
an environment with a single infostate and two possible hid-
den states. Furthermore, let h,, = Ay, mod 2. Such an envi-
ronment is not stationary in the Markov sense, as the hidden
states change with each episode. However, defining 0 4,05
as the empirical distribution of joint policies across the first
and second half of timesteps as described in Section 4, such
an environment would (asymptotically) satisfy child station-
arity as the distribution of hidden states for the first and
second half would approach (%, %) in the limit. As shown
in Section D, child stationarity, despite being weaker than
Markov stationarity still allows BQL to converge to the op-
timal policy.

C The MAX-CFR Algorithm

MAX-CFR is a variant of ES-MCCFR that ABCs reverts
to if the environment fails child stationarity at every pos-
sible s, a (i.e., is “maximally nonstationary”). MAX-CFR
can also be viewed as a bootstrapped variant of external-
sampling MCCFR (Lanctot et al. 2009). See Algorithm 3.

Connecting ABCs, MAX-CFR, and ES-MCCFR

To make explicit the connection between MAX-CFR and
traditional external-sampling MCCFR (Lanctot et al. 2009)
we adopt the Multiplicative Weights (MW) algorithm (also
known as Hedge) as the underlying regret minimizer. In

Algorithm 3 MAX-CFR

Precondition: (), CNT initialized to 0, discount factor ~,
total episodes V. Initial observation and hidden states
S0, ho.

for n <~ 1to N do
MAXCFR(hO; 50, Qa v, n)

function MAXCFR(h, s, Q, v, n)
if h is terminal then return O

7" (s) - softmax (Q(a*)ﬁ = cﬁ())
CNT(s) < CNT(s) + 1

for a € A(s) do
a < 1/CNT(s)
W,s' a', Vs q < GetChild(h, s,a,n,Q,7)
Vs’,a’ — f(h’/7 8/7 Q7 v, ﬂ)

vs,a — vs,a + CNT(SI) . Vsl,a/
Q(‘S’ CL) «— Q(87 a’) + avs,a

a* + arg max, Q(s,a)
return V -

MW, a player’s policy at iteration n + 1 is given by

eT,LR"(s,a)

T R™(s,a’)’
Za’eA(s) € ()

where R" (s, a) denotes the cumulative regret at iteration n,
for action a at infostate s. Hedge also includes a tunable
hyperparameter 7,,, which may be adjusted from iteration to
iteration. Letting 7,, = 1 across all iterations, we recover the
softmax operator on cumulative regrets as a special case of
Hedge.

We will assume there are no non-terminal rewards 7;, and
use a discount factor of v = 1, both of which are standard
for the two-player zero-sum environments on which CFR is
typically applied. We adopt 7,, = 1 for simplicity, but note
that the following equivalences hold for any schedule of 7,,.

We first present Boot-CFR, a “bootstrapped” version of
external-sampling MCCFR that is identical to the original
ES-MCCFR algorithm. To make the comparison between
Boot-CFR and MAX-CFR clear, we highlight the difference
between the two algorithms in cyan.

7" (s,a) =

Lemma C.1. Multiplicative Weights / Hedge is invari-
ant to the choice of cumulative regrets or cumulative re-
wards/utility.

Proof. Tt is well-known and easy to verify that Multiplica-
tive Weights / Hedge is shift-invariant. That is,
Hedge(z) = Hedge(x + ¢).
Over N iterations, the cumulative counterfactual regret of
not taking action a at infostate s is given by
N

1 an
RV (s,) = 5 >0 0l (s) — 07" (s),

n=1

Algorithm 4 Boot-CFR

Precondition: Same preconditions as MAX-CFR (Algo-
rithm 3).

forn < 1to N do
BOOTCEFR (hy, so, @, 7, n, BOOTCFR)

function MODGETCHILD(h, s, a, 7, @, ")
Sample b/, s" ~ T™(h' | h,a),S(h)
Sample r ~ R™(r | s,a,s’)
return i/, s’ r

function BOOTCFR(h, s, Q,~,n)
if h is terminal then
for a € A(s) do
As a0
return

" (s) softmax(Q(S,*)aT = cﬁ(g))
CNT(s) + CNT(s) + 1

fora € A(s) do
Ag e+ 0
I, s, r + ModGetChild(h, s, a, 7", Q, ")
for o’ € A(s') do
Vs,a,a’ —r+ ’YQ(Slv a/)) - Q(S, Cl)

Qola + Q(5', %)
BOOTCFR(I, s', Q,~,n)

Qnew — Q(S,v *)

mla(s) SOftm&lx(Qul(l(y, *), T = 1
for o’ € A(s") do
As,a = ASﬂ + 7-‘-gval(s/’ Cl/)
C%(‘“) (v&"wa/ + CNT(‘S/) : As’,a’)}

Q(s,a) < Q(s,a) + As
return

where 7, , is identical to 7™, except that action a is always
taken given infostate s. Since the second term does not de-
pend on the action a, this is equivalent to using Hedge on
the cumulative counterfactual rewards

AR
N v)
n=1

by the shift-invariance of Hedge. 0

Lemma C.2. Boot-CFR and external-sampling MCCFR use
the same current policy and traverse the game tree in the
same way.

Proof. First, note that game-tree traversal is identical to
external-sampling MCCFR by construction. For a given
player, we branch all their actions and sample all opponent

)

CNT(s')

actions from the current policy. Additionally, while external-
sampling MCCFR uses softmax on cumulative regrets, by
Lemma C.1, this is equivalent to softmax on cumulative re-
wards. Note that the policy in Boot-CFR is given by

= softmax (Q(s, *) - CNT(s)) .

As Q(s,a) is the average reward from taking action a at
infostate s, it follows that Q(s, a) - CNT(s, a) is the cumu-
lative reward. Further, since we branch all actions anytime
we visit an infoset, then CNT(s,a) = CNT(s) and the pol-
icy in Boot-CFR is equivalent to a softmax on cumulative
rewards. O

Theorem C.3. Boot-CFR and external-sampling MCCFR
are identical.

Proof. Boot-CFR and external-sampling MCCFR are iden-
tical regarding traversal of the game tree and computation
of the current policy (Lemma C.2). Thus, it suffices to show
that the updates to cumulative/average rewards are identical.

Let W denote the set of terminal states that are reached
on a given iteration of Boot-CFR or external-sampling MC-
CFR. For any z € W, we define u;(z) to be the reward
for player ¢ at terminal history z. Consider current history
h, current infostate s, and action a. Let h’ be the history
reached on the current iteration after taking action a. For
external-sampling MCCFR, the sampled counterfactual re-
gret of taking action a at infostate s is given by

7(s,a) = Z ul(z)(n:(hlvz) —n; (h, 2)).

zeW

By Lemma C.1, when using Hedge, we can consider only
the sampled counterfactual rewards

r(s,a) = Z ui(z) ™ (W, 2).

zeW

While the sampled counterfactual reward is typically only
defined for non-terminal observations, for the sake of the
proof, we extend the definition to terminal observations, let-
ting r(s,a) = w;(z), where z is the terminal history corre-
sponding to observation h.

We will prove that A, , = %ﬁgs‘l)

visit on a given iteration and all actions a.

We proceed by induction. First, we have this equivalence
for all terminal nodes, since A; , = 0 at a terminal node.
Now, consider an arbitrary infostate s and action a, and sup-
pose that Ay o = % for all actions @’ and s’
reachable from s after playing action a. By our inductive
hypothesis, we have

vs,n,,a’ + CNT(SI) : As’,a/

for all s that we

r(s',ad') —Q(s',a’)

=Q(s',a') — Q(s,a) + CNT(s") - CNT(s')

=r(s',a) — Q(s,a).

Additionally, we have

r(s,a) = 3 wilz) - nf (i, 2)

zeW

douwix)- | Y wldls)-uf(hy, 2)

zeW a’€A(s’)

= Z m(a'|s") Z ui(2)n] (hgrs 2)

a’€A(s") zeEW
= 3 w@ls) (s a),
a’'€A(s")

where h/, is the history reached after playing action o’ at
history A’. It follows that

= # . ey . AW Let
As’a - Z CNT(S) 7T(a |S) [Vsﬁa,a’ +CNT(8) AS/’G/]

a’€A(s")

= > G @)) - Qa.a)

a’'€A(s")

1 Wi o
G| 3 Al)
_ r(s,a) - Q(Sva)

CNT(s)

as desired. The Q-update becomes
7’(8, Cl) — Q(S7 CL)
Q(s:0) = Qss0) + =G s
(CNT(S) _ 1)) Q(Sa CL) + ’I"(S, a)
CNT(s) ’
and corresponds precisely to updating the average Q-value

with the external-sampling sampled counterfactual reward.
O

Corollary C.4. MAX-CFR and External-Sampling MCCFR
are identical, up to minor differences in the calculation of an
action’s expected utility/reward.

Proof. One can verify that there is a single difference be-
tween Boot-CFR and MAX-CFR, where the line highlighted
in cyan in Algorithm 4 is replaced by

ol (8') < hardmax(Quew(s’, x) - CNT(s")),

where hardmax places all probability mass on the en-
try/action with the highest value. Thus, instead of calcu-
lating the sampled reward of taking action a at infostate s
with respect to the current softmax policy, MAX-CFR cal-
culates the sampled reward with respect to a greedy policy
that always selects the action with the greatest cumulative re-
ward/smallest cumulative regret. This greedy policy is taken
with respect to the new Q-values after they have been up-
dated on the current iteration.

Importantly, the current policy and cumulative policy of
all players is still calculated using softmax on cumulative
rewards. It is only the calculation of sampled rewards that
relies on this new hardmax policy. O

Finally, we can relate MAX-CFR to ABCs. We have the
following simple relationship.

Theorem C.5. Up to e-exploration, ABCs reduces to MAX-
CFR in the case where all (s, a) pairs are detected as non-
stationary.

Proof. This follows from the definition of Algorithm 2,
where removing the e-exploration recovers MAX-CFR. [

Theorem C.6. With high probability, MAX-CFR minimizes
regrets at a rate of O (\/—lﬁ>

Proof. Written in terms of Q-value notation, the local re-
grets that are minimized by CFR(Hedge) are given by

r (37 CL) = "731(5) (QW (87 CL) -]E(lNﬂ(S) [Qﬂ'(‘g? a’)])

Nt (s,a) = max(O, (s, a))

Define ¢’ , as the policy in which:

1. All players except player P(s) follow 7 at all states in
the game,

2. Player P(s) plays as necessary to reach s and plays ac-
tion a at s, and

3. Player P(s) plays the action with the highest Q value at
s’, where s is the state directly following s.

Policy 7/ , is identical to the counterfactual target policy
that CFR(Hedge) follows, except that 7 , alters the policy
at the successor state s’ to follow the action with the high-
est Q value instead of sampling an action according to 7.
Analogously, define the modified MAXCEFR local regrets as

7AJJCIIAXC'FR(Sv a) =nZ,(s) (Qw:’a (87 a) — an'fr(s) [Qﬂ'(& a’)})

N+ _ N
"aaxcrr(s:a) = max(0, 7y 4 xcrr(s:a))
These regrets are identical to the standard CFR regrets

r™ (s, a), except for the fact that the target policy is modified
toml,.

Lemma C.7. For any s', 7 and any possible Q values,
max Q(s',a) — Equr[Q(s',a)] > 0.

Proof. This follows immediately from the properties of the
max operator. O

Lemma C8. rV(s,a) < r¥ ixcrr(s,a).
Proof. By definition of 7 ,, we can write:
Qe (s,a) = Q" (s, a)

+ Egnrn(s)s,0) [H}ZE}X Q(s',a") = Eqrnr[Q(s', a']].

Since the second term 1is strictly nonnegative by
Lemma C.7, we have RY, 4 vcrr(s,a) > RN (s,a). O

Lemma C.9. Let A be the difference between the lowest and
highest possible rewards achievable for any player in G. Let

N, o denote the number of times MAX-CFR has visited s, a.

We have RY; s xcrr(s,a) < \/ﬁi.

Proof. Since we choose all policies over a softmax, all poli-
cies have full support and n™;(s) > 0 for all s. Thus,
N;.o = N in MAX-CFR. Noting that MAX-CFR chooses
its policy 77, proportionally to exp(ri s xcrr(s: @), it
follows from the Multiplicative Weights algorithm (Freund
and Schapire 1997; Arora, Hazan, and Kale 2012), that
the regrets given by 12 s xcpr(8,a) after N iterations are
bounded above by \/A—N with high probability. O

Notice that like CFR, the guarantee of Lemma C.9 holds
regardless of the strategy employed at all other s, a in the
game, so long as the policy at iteration n chooses action
a at state s proportionally to exp (7 4 ycpr(s, a)). Since
Lemma C.8 shows that local regrets for MAXCFR form an
upper bound on the standard CFR regrets (over the sequence
of joint policies 7! - - -), we can apply (Zinkevich et al.
2008, Theorem 3) along with Lemma C.9 to show that the
overall regret of the game is,

N
ré < ||IS| |14 H;%XTM:XCFR(&@)

A 1
< IS Al = o(\/ﬁ)

D Convergence of ABCs

Theorem 4.4. Assume that Algorithm 2 tracks separate
Q (s, a) values for stationary and nonstationary updates and
has access to a perfect oracle for detecting child stationar-
ity. Then, the average policy limpy_, % 25:1 T, in Al-
gorithm 2 converges to a Nash equilibrium in a two-player
zero-sum game with high probability.

Proof. Call our current game G. We will prove convergence
to a Nash equilibria in G by showing the average policy in
Algorithm 2 has vanishing local regret. This is sufficient to
show the algorithm as a whole has no-regret and thus con-
verges to a Nash equilibrium (Zinkevich et al. 2008, Theo-
rem 2).

We first define a perfect oracle. At every episode N, a per-
fect oracle has full access to the specification of game G and
the joint policy, 7 - - - mpy, of all players in each episode 1
through N. As per Section 4, define o) as the uniform dis-
tribution over {7y -7 /2 } and o}y as the uniform dis-
tribution over {7 n/2)+1 - - ™n }. Define the following two
distributions:

D{V(h’) = Eﬂeaﬁ [Tﬂ'(h/ ‘ S, CL)}
D3’ (h) = Ereoy [Tr(h' | 5,0)].

Define the total variation distance between these two dis-
tributions (Billingsley 2012), as

By = 3 D () - DY W)
heH

A perfect detector will return that s, a is child stationary
at iteration NN if and only if Ay = 0.

We assume separate Q-value tables for the stationary and
nonstationary updates, so that the updates do not interfere
with each other. To determine the policy at each iteration (or
episode) n, we chose 7" (a) o Q(s,a) where Q is the non-
stationary Q-table if s, a fails child stationarity and the sta-
tionary table otherwise. The result of this is that, with respect
to a given s, a, updates done at child stationarity iterations
have no impact on updates done at non child stationarity it-
erations and vice versa.

To prove Theorem 4.4, we proceed by induction. As the
base case, consider any terminal infostate s of the game tree
where there are no actions. In this case, all policies are no-
regret. For the inductive hypothesis, consider any infostate
s and assume that ABCs guarantees no-regret for any s’, a’
where s’ is a descendent of s and o’ is a valid action at s’.
To show is that ABCs also guarantees the no-regret prop-
erty at s, a. Formally, define n”;(s) = 3 jcp(s) nZi(h).
We write the local regret for a policy 7 as r™(s,a) =
maX(07 777:1(5) (Qﬂ-(sa Cl) - IEa’~71'(s) [Qﬂ- (37 CL/)D)

Consider the sequence (dy,),,, where d,, € {0, 1} repre-
sents whether the oracle reports whether s, a is child sta-
tionarity after n iterations (or episodes) of training. There
are three cases to consider: (d,),, converges to 0 and fails to
satisfy child stationarity in the limit, converges to 1 and sat-
isfies child stationarity in the limit, or fails to converge (e.g.,
perhaps it oscillates between child stationarity and not child
stationarity).

Case 1: s,a fails child stationarity in the limit (i.e.,
(dy),, — 0).

In Appendix C, we show that ABCs runs MAX-CFR at
every s, a that does not satisfy child stationarity according
to the detector. Lemma C.9 shows that running MAX-CFR
at a given state and action s, a achieves vanishing local re-
gret at s, a, and the assumption of the perfect oracle means
that ABCs will asymptotically converge to MAXCER at this
particular s, a. Combined with our inductive hypothesis, this
guarantees that ABCs is no-regret for (s,a) and all its de-
scendent infostate, action pairs.

Case 2: s,a satisfies child stationarity in the limit (i.e.,
(dn), — 1). Let 7" denote the average joint policy at
episode IN. The Multiplicative Weights / Hedge algorithm
(Freund and Schapire 1997; Arora, Hazan, and Kale 2012)
guarantees that selecting m,41(s) oc softmax(Q™ (s, x))
has limpy 00 7™V (s,a) = 0. When the detector success-
fully detects s, a as child stationary, Algorithm 2 performs
exactly such an update at every infostate visited (except that
it uses estimated QFN (s:0) yvalues). We also show that the
estimated Q7 (s,) values converge to the true Q™ (s, a)
values, resulting in Hedge / Multiplicative weights perform-
ing the softmax update on the correct counterfactual regrets.
We do so as follows.

Lemma D.1. Define G*(s,a) = limy_oo G™ (s,a). If
(di), — 1, then G*(s, a) is guaranteed to exist.

Proof. While G*(s, a) is not a well defined subgame in gen-
eral, we show that it exists if s, a is asymptotically child sta-
tionarity. Considering a vectorized form of the payoff entires

in a finite action, normal form game, the set of all games can
be written as a subset of RY, for a suitable ¢, and forms a
compact metric space. (dy,),, — 1 implies Ay — 0 by con-
struction. Let ﬂf , ﬂg represent the average joint policies as
defined in Section 4 at iteration N 7N s, by definition, the
average joint policy between 72 4 and 7rB Using the sym-
metry of the total variation distance along with the triangle
inequality, we have

d(GfN (s,a),G™ ' (s, a))

N+1 N+1

zd(G%”gJ’“g(s,a) Gz™a 7 (s,a))

< d(G%”g*‘%”g (s,a), G4 (s, a))
(s.0))

N+1 N+1

+7rB

d(G’TA (s:0) Gim

+ d(G7T§ (s,a), G’ (s, a))
1

<A A
N+ N+1+N+1

where we have that d(G%”ng%’rg(s,aLG”g) <

d(G”g(s,aLG”X(S’“)) due to the convexity of the to-
tal variation distance (Billingsley 2012). Additionally,
a6 (s,0),67 " (s,0) < by
structlon 7 and 7! are identical in all by at most
fraction of the joint p011c1es in the support. Since

because, by con-

N+1
limpy o0 d(GTr (s,a), ™" (s, a)) = 0, the sequence of

. =N
games given by G™ (s,a) forms a Cauchy sequence and
G* (s, a) is guaranteed to exist since Cauchy sequences con-
verge in compact metric spaces. O

By the assumption that G is a two-player zero-sum game,
G*(s,a) must also be a two-player zero-sum game. By our
inductive hypothesis, ABCs has no regret for any s’, a’ that
is a descendent of s, a. This, combined with the existence of
G*(s,a) and (Zinkevich et al. 2008, Theorem 2) means that
limy o @ converges a Nash equilibrium of G*(s, a).

The minimax theorem (von Neumann 1928) states that in
two-player zero-sum games, players receive the same pay-
off, known as the minimax value of the game, regardless of
which Nash equilibrium is discovered. Call this value Q*.
Furthermore, by the assumption that lim(d;), — 1, the im-
mediate rewards received after taking action a at state s must
converge to some value r*. As such, the estimated Q values
must converge to the correct value Q™ (s,a) = r* +yQ*,
as desired.

Case 3: Imagine that s, a is neither stationary nor nonsta-
tionary in the limit. Let

AN star = {de | dy =0}, AN, ={d; | dy = 1}.

nonstat —

Each of limy_, HAétatH and limpy_ o0 ||AnonétatH
must both diverge, since if one of them were only finitely
large, then this would contradict the assumption that (d;):
does not converge.

As described in our setup, because we track separate Q
values for stationary and nonstationary updates and use a
perfect oracle, the updates done in iterations Asmt have no
impact on the updates done on Anonsmt and vice versa. As
such, consider the subset of timesteps given by AY . . By
direct reduction to Case 1, the distribution over joint pohcles
given by sampling uniformly over {m | k € AN . ..
must satisfy the no-regret property for s, a. Analogously, the
distribution over joint policies given by sampling uniformly
over {m) | k € AN} must satisfy the no-regret property
for s, a by direct reduction to Case 2.

As the inductive hypothesis is satisfied for both parti-
tions AN , and AN . .. we can continue to induct inde-
pendently for each partition. The induction terminates at the
initial infostate sy of our game because we assume finite
depth. Suppose we are left at this step with K nonoverlap-
ping partitions of {1--- N}. Denote them AY ... A¥, and
analogously define 7% m ZneAg m,. By our in-
ductive hypothesis and the minimax theorem, we are guar-
anteed that limy_, o FN (s,a) = 0, for all s,a,k. Since
7 = L3, | AN || 7% . we can write

max 7™ (s,a) = max % Z | AY| PN (s,a)
k
1 :
< N zk: [l AX|l m;auxr’r?V (s,a).

Lastly, since th_>Oo PN (s,a) = 0 for all s,a,k, it

must also be true that 7™ (s7 a) — 0 as desired.

O

Theorem 4.5. Given an appropriate choice of signifi-
cance levels a, Algorithm 2 asymptotically converges to the
optimal policy with only a worst-case O(A) factor slow-
down compared to BOL in an MDP.

Proof. We choose the significance levels a across different
infostates as follows. As described in Algorithm 2, at each
infostate s encountered, ABCs chooses a single action a¢y.q;
and branches this, regardless of whether s, a;.q; satisfies
child stationarity with respect to the policies encountered
during the learning procedure. Define the set of infostates
So - - - S¢ where sq is the initial infostate and sy, is the infos-
tate observed after playing the corresponding a;.; action
at s;_1. This “trajectory” is the set of infostates that ABCs
would have updated even if the environment was fully child
stationary and the direct analogue of the trajectory that BQL
would have updated. Note that the chosen “trajectory” may
change during every iteration of the learning procedure.

For any infostate on this constructed trajectory, set o <
ﬁ, where A is the maximum number of actions at any in-
fostate and d is the depth of infostate s. At all other infos-
tates, set v < %.

This choice of significance levels guarantees only an
O(A) factor slowdown compared to BQL. Let X 4pcs(d)
count the number of infostates of depth d that ABCs updates
at each iteration.Since the environment is an MDP, an in-
fostate is updated only if the detection algorithm hit a false

positive on every ancestor of the infostate that was not on the
trajectory path. We bound this probability as follows. Con-
sider an infostate s with depth d. Let d* be the highest depth
infostate in the ancestry of s that was on the “trajectory”
path. As false positives asymptotically occur with probabil-
ity o in a Chi-Squared test (Pearson 1900) %,the probability
that s is visited approaches,

i=d*+1

There are only at most A% nodes at depth d in the tree, and
thus, in expectation, we can expect at most A~¢A? = O(1)
extra updates at level d in the tree, or O(D) total extra up-
dates for a game tree of depth D. Since MAXCEFR is a con-
traction operator over the potential function which bounds
the regret (Appendix C, additional, unnecessary updates at
infostates falsely deemed to be nonstationary by the detec-
tor in Algorithm 1 will not hurt the asymptotic convergence
rate, as MAXCFR also converges the optimal policy of an
MDP.

Since our environment is noncyclical and BQL learns
from trajectories, ABCs will do O(D) updates on a game
tree of depth D, completing the proof. However, ABCs up-
dates every action at an infostate whereas BQL only updates
a single action, giving the additional O(A) inefficiency rel-
ative to BQL.

E Experimental Details
Testing Environments

We present more detailed descriptions of our testing envi-
ronments, including any modifications made to their stan-
dard implementations, below.

Cartpole Cartpole is a classic control game from the Ope-
nAl Gym, in which the agent must work to keep the pole
atop the cart upright while keeping the cart within the
boundaries of the game. While Cartpole has a continuous
state space, represented by a tuple containing (cart posi-
tion, cart velocity, pole angle, pole angular velocity), we dis-
cretize the state space for the tabular setting as follows:

e Cart position: 10 equally-spaced bins in the range

[—2.4,2.4]

e Cart velocity: 10 equally-spaced bins in the range
[—3.0,3.0]

* Pole angle: 10 equally-spaced bins in the range
[—0.5,0.5]

* Pole angular velocity: 10 equally-spaced bins in the
range [—2.0, 2.0]

Additionally, to make convergence feasible, we parame-
terize the game such that the infostates exactly correspond to
the discretized states, rather than the full sequence of states
seen and actions taken. Note that this means that our ver-
sion of Cartpole does not satisfy perfect recall; to account

8Since the Chi-Squared test is an asymptotic test, this is true in
the limit, but not necessarily for finite samples.

for this and ensure that we are not repeatedly branching the
same infostate, we prevent ABCs and MAX-CFR from per-
forming a CFR exploratory update on the same infoset twice
in a given iteration.

The standard implementation of Cartpole is technically
non-Markovian as each episode is limited to a finite num-
ber of steps (200 in the vO implementation). To make the
environment Markovian, we allow the episode to run in-
finitely, but we introduce a 1/200 probability of terminat-
ing at any given round, thus ensuring that the maximum ex-
pected length of an episode is precisely 200.

Weighted Rock-Paper-Scissors Weighted rock-paper-
scissors is a slight modification on classic rock-paper-
scissors, where winning with Rock yields a reward of 2
whereas winning with any other move only yields a reward
of 1 (a draw results in a reward of 0). The game is played se-
quentially, but player 2 does not have knowledge of the move
player 1 makes beforehand (possible via use of imperfect-
information / infostates).

Kuhn Poker Kuhn Poker is a simplified version of poker
with only three cards — a Jack, Queen, and King. At the start
of the round, both players receive a card (with no duplicates
allowed). Each player antes 1 — player 1 then has the choice
to bet or check an amount of 1. If player 1 bets, player 2 can
either call (with both players then revealing their cards) or
fold. If player 1 checks, player 2 can either raise an amount
of 1 or check (ending the game). In the event that player 2
raises, player 1 then has the choice to call or fold, with the
game terminating in either case.

We use the standard OpenSpiel implementation of Kuhn
poker for all our experiments.

Leduc Poker Leduc poker is another simplified variant of
poker, though it has a deeper game tree than Kuhn poker. As
with Leduc, there are three cards, though there are now two
suits. Each player receives a single card, and there is an ante
of 1 along with two betting rounds. Players can call, check,
and raise, with a maximum of two raises per round. Raises
in the first round are two chips while they are four chips in
the second round.

Again, we use the standard OpenSpiel implementation of
Leduc poker for all our experiments.

Cartpole + Leduc Poker For our stacked environment,
player 1 first plays a round of Cartpole. Upon termination
of this round of Cartpole, they then play a single round of
Leduc poker against player 2. Note that player 2 only ever
interacts with the Leduc poker environment.

We use the same implementations of Cartpole and Leduc
poker discussed above, with the sole change being that we
set Cartpole’s termination probability to 1/100 rather than
1/200 to feasibly run MAX-CFR on the stacked environ-
ment.

Hyperparameters Used

For all of the experiments in the main section of the paper,
we use the same hyperparameters for all of the algorithms
tested. We enumerate the hyperparameters used for BQL,
MAX-CFR, and the MCCFR methods in Table 1.

We tuned the hyperparameters for MCCFR methods,
BQL, and ABCs as to optimize performance over all five
environments for which experiments were conducted.

Table 1: Benchmark Hyperparameter Values

Hyperparameters Final Value

Discount Factor vy=1

BQL Temperature Schedule T, = 10-(0.99) Ln/50]
MAX-CFR Temperature Schedule T, =1

OS-MCCFR e-greedy Policy e=0.6

For ABCs, we use the following set of hyperparameters,
enumerated in Table 2. As noted in the main paper, we make
a number of practical modifications to Algorithm 2. In par-
ticular, we use a fixed p-value threshold, allow for different
temperature schedules for stationary/nonstationary infosets,
choose not to use e-exploration, and only perform the sta-
tionarity check with some relatively small probability.

Table 2: ABCs Hyperparameter Values

Hyperparameters Final Value

Discount Factor vy=1
Nonstationary Temperature Schedule T, =1

Stationary Temperature Schedule

Cutoff p-value as =0.05
e-exploration e=0
Probability of Stationarity Check Peheck = 0.05

Evaluation Metrics

For all our experiments, we plot “nodes touched” on the x-
axis, a standard proxy for wall clock time that is indepen-
dent of any hardware or implementation details. Specifically,
it counts the number of nodes traversed in the game tree
throughout the learning procedure. On each environment,
we run all algorithms for a fixed number of nodes touched,
as seen in the corresponding figures.

For all multi-agent settings, we plot exploitability on the
y-axis. For Cartpole, we plot regret, which is simply the dif-
ference between the reward obtained by the current policy
and that obtained by the optimal policy (200 minus the cur-
rent reward).

Random Seeds

We use three sequential random seeds {0, 1, 2} for each ex-
periment.

10 ABCs Stationary Detection

o
(o)
1

o
(o2}
1

Fraction of Nonstationary Nodes

0.4
0.2 Cartpole
Weighted RPS
Kuhn Poker
0.0 Leduc Poker
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Total Runtime
Figure 2: Stationarity detection for Cartpole, RPS, Leduc

poker, and Kuhn poker. The fraction of infostates detected
as non-stationary is plotted over time.

ABCs Stationary Detection on Stacked Environment

1.0
Cartpole

8 Leduc Poker
5 0.8
<)
z
>
2 06
kel
©
z
S 0.4
z
k]
502
©
©
w

0.0

T T T T T T
0 1 2 3 4 5
Nodes Touched 1e6

Figure 3: Nonstationary detection on stacked Cart-
pole/Leduc poker environment.

F Additional Experiments
Stationarity Detection

We plot percentage of infostates detected as nonstationary
over time for each of the non-stacked environments in Fig-
ure 2. We normalize the x-axis to plot the fraction of total
runtime/nodes touched so that all environments can be more
easily compared.

Note that the multi-agent environments possess varying
levels of stationarity. The policies in weighted RPS are
cyclical, meaning that the corresponding transition functions
change throughout the learning procedure. In contrast, in our
two poker environments, there are several transition func-
tions that may stay fixed, either because the outcome of that
round is determined by the cards drawn or because agents’
policies become fixed over time.

To take an example, in the Nash equilibrium of Kuhn
poker, player 1 only ever bets in the opening round with a
Jack or a King. Thus, if player 2 is in the position to call with
a King, betting will necessarily yield the history in which
players have cards (K, J) and player 2 calls player 1’s initial

bet.

To better visualize the performance of ABCs on our
stacked Cartpole/Leduc environment, we plot the fraction
of infostates detected as nonstationary in each environment
separately in Figure 3.

TicTacToe

We also run experiments on TicTacToe. While TicTacToe is
not a fully stationary game — as it is still a multi-agent setting
— it is a perfect information game, meaning that BQL should
still be able to learn the optimal policy of the game. As with
Cartpole, we modify the infostates to depend only on the
current state of the board.

We plot results for ABCs and benchmarks in Figure 4,
with exploitability clipped at 10~° to facilitate easier com-
parison. To accelerate convergence, we evaluate the current
greedy policy rather than the average policy — note that last-
iterate convergence implies average policy convergence. We
additionally modify the temperature schedules for ABCs and
BQL to accommodate the larger game tree. These are listed
in Table 3.

Table 3: TicTacToe Hyperparameter Values

Hyperparameters Final Value
ABCs Non-
stationary Temperature Schedule T, =1

ABCs

Stationary Temperature Schedule 7, = 10 - (0.99) n/50]

BQL Temperature
100
Schedule 7 = 10 - (0.99)!"/100
Tic-Tac-Toe
0
10" 3 ABCs
3 BQL
-] ES-MCCFR
10 3
° E 0S-MCCFR
b MAX-CFR
81074
>
8107 3
£
[e%
x -
w 1074
10 3
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Nodes Touched 1e7

Figure 4: Performance on TicTacToe, exploitability is
clipped at 10~° and plotted on log scale.

Stationarity Detection for Tic-Tac-Toe

0.8

0.6 1

0.4 4

0.2 1

Percentage of Nonstationary Nodes

T T
0.0 0.2 0.4 0.6 0.8 1.0
Nodes Touched 1e7

Figure 5: Nonstationary detection on TicTacToe.

G Additional Related Work

We expand on the related work from Section 1.

Methods from Game Theory

While CFR guarantees polynomial time convergence in
MDPs (assuming the MDP satisfies perfect recall), empir-
ically it performs far slower than its corresponding rein-
forcement learning counterparts despite the same worst case
bound. This is primarily because, in practice, reinforcement
learning methods such as PPO (Schulman et al. 2017) or
DQN (Mnih et al. 2015) are able to learn reasonable poli-
cies in benchmarks such as the Atari Learning Environment
(Bellemare et al. 2013) while exploring only a tiny fraction
of the possible states in the environment. Meanwhile, CFR
requires updating every infostate in the entire game tree at
every iteration of the game.

Monte Carlo Counterfactual Regret Minimization Ex-
ternal sampling Monte-Carlo CFR (ES-MCCFR) and Out-
come sampling Monte-Carlo CFR (OS-MCCFR) (Lanctot
et al. 2009) are two methods that have been proposed to al-
leviate this issue. ES-MCCFR samples a single action for
each player other than the player conducting the learning
procedure (including the chance player) for each iteration,
resulting in substantially fewer updates compared to the full
version of CFR. However, because external sampling still re-
quires performing a single update at every infostate of every
player, it still requires O(A”) updates per iteration, where
A is the number of actions and D is the maximum depth of
the game tree, with respect to any single player. OS-MCCFR
is similar to ES-MCCEFR except that it only samples a single
trajectory and then corrects its estimates of the counterfac-
tual values using importance sampling. While this update
is indeed a trajectory style update like Q-learning, the vari-
ances of the estimated values are exceedingly high as they
involve dividing by the reach probability of reaching an in-
fostate, which will be on the order of O(A~"). As such,
OS-MCCFR will still require on the order of O(AP) trajec-
tories before it learns a reasonable policy.

Several methods have been proposed to empirically im-
prove the asymptotic convergence rate with respect to the
number of iterations. CFR+ (Tammelin 2014) is a popu-
lar method that modifies the regret estimate to be an up-
per bound of the actual regrets. The same work also intro-
duced alternating updates, which is only updating the regrets
of each player every P iterations, where P is the number
of players in the game. Linear CFR (Brown and Sandholm
2019a) and its follow up work greedy weights (Zhang, Lerer,
and Brown 2022) modify the weighting scheme of the CFR
updates. All the above methods empirically improve the con-
vergence rate but maintain the worst case bound.

Methods from Reinforcement Learning

While reinforcement learning was designed for finding op-
timal policies on MDPs, many attempts have been made to
adapt such algorithms to the multi-agent setting. Algorithms
such as Q-learning and PPO are generally not guaranteed to
converge to equilibria in such settings (Brown and Sandholm
2019a).

AlphaStar AlphaStar (Vinyals et al. 2019) attempted to
learn the real-time strategy game of Starcraft via reinforce-
ment learning. Since Starcraft is a two-player imperfect in-
formation game, to combat the nonstationarity involved in
playing multiple different opponents who required different
strategies to defeat, AlphaStar trained against a league of
agents instead of a single agent as is usually the case in self
play. Such a league simulates the distribution of human ad-
versaries AlphaStar is likely to encounter while playing on
the Blizzard Starcraft ladder. While this method performed
reasonable well in practice, it did not come with guarantees
of convergence to the Nash equilibria of the game.

OpenAl Five OpenAl Five (OpenAl 2019) was a similar
project to learn DOTA 2, a popular multiplayer online bat-
tle arena video game. In order to combat the nonstationarity,
OpenAl Five played in a restricted version of DOTA 2, in
which aspects of the gave that involved imperfect informa-
tion (such as wards which granted vision of enemy areas)
were removed from the game. Indeed, while the resulting
agent was able to beat some of the best human teams in the
world online players quickly found strategies that coule ex-
ploit the agents.

RMAX On the more theoretical side, RMAX (Brafman
and Tennenholtz 2002) is a classic algorithm from reinforce-
ment learning that achieves both optimal reward in an MDP
and the minimax value of a stochastic game in polynomial
time. RMAX operates by maintaining an optimistic estimate
of the Q-values of each state which upper bounds the pos-
sible value of each state and thus encourages exploration of
such states. This optimistic upper bound ensures However,
there are several differences between RMAX and ABCs. For
starters, RMAX is not model free — it requires a model of the
environment to estimate the Q values. Additionally, unlike
CFR (and by extension ABCs), it is not Hannan consistent,
meaning it will not play optimally against an arbitrary adver-
sary in the limit. On a more practical level, RMAX leads to
substantially more exploration than its related methods such

as Q-learning by design, and as a result is used less often
in practice compared to variants such as Q-learning which
often are able to learn reasonable policies while exploring
only a tiny fraction of the environment.

Nash Q-Learning Nash Q-Learning (Hu and Wellman
2003) is an adaptation of the standard Q-learning algorithm
finding the minimax value of stochastic game, which cor-
responds to the Nash equilibrium in two-player zero-sum
games. Instead of doing a standard Q-learning update, Nash
Q-learning calculates the Nash equilibrium of the subgame
implied by the Q-values of all players and performs an up-
date according to that policy, instead of the policy being cur-
rently followed by all players. However, there are several
important differences between ABCs and Nash Q-learning.
Firstly, in our multi-agent learning setup, ABCs is run for
each player of the game, but the learning algorithms for each
player are run separately, with no interaction between play-
ers except via the game itself. In contrast, Nash-Q requires a
centralized setup in which players collectively choose their
individual strategies as a function over the Q-values over
all players in the game. In this sense, Nash Q-learning is
a collective algorithm for finding equilibria of the game as
opposed to a learning algorithm trying to optimize the re-
ward of each agent. Additionally, Nash Q-learning requires
a Nash equilibrium solver for every update of the Q-values.
While this is possible in polynomial time in a two-player
Zero-sum game, it is more expensive than the analogous up-
date in ABCs and Q-learning which is done in constant time.

Unified Methods from Game Theory and
Reinforcement Learning

Magnetic Mirror Descent Magnetic Mirror Descent
(MMD) (Sokota et al. 2023) is similarly a unified algo-
rithm capable of solving for equilibria in two-player zero-
sum games and in single player settings. However, unlike
ABCs, MMD does not adaptively determine whether or not
to branch infostates based on whether or not they are sta-
tionary. As such, it cannot simultaneously guarantee con-
vergence to Nash in two-player zero-sum games and match-
ing performance against BQL with the same set of hyper-
parameters. MMD runs experiments on a variety of single
and multi-agent environments, but requires different hyper-
parameters for each one, most importantly those governing
how many infostates to explore. In contrast, ABCs manages
to roughly match the performance of Boltzmann Q-Learning
in stationary environments and the performance of counter-
factual regret minimization all with the same set of hy-
perparameters due to adaptively choosing how much of the
tree to explore based on how stationary the infostate is.

Player of Games Player of Games (Schmid et al. 2021)
is an algorithm that is able to simultaneously achieve su-
perhuman status on many perfect and imperfect informa-
tion games by combining lessons from both AlphaZero and
counterfactual regret minimization. Instead of exploring the
whole game tree as is the case with standard CFR, Player
of Games expands a fixed number of infostates at each
timestep. This is in contrast to ABCs which performs an
adaptive choice on how many children to expand depending

on whether the infostate and action satisfies child stationar-
ity. As a result, PoG performs asymptotically slower than its
counterparts designed for perfect information / single agent
environments as a price for its generality. In contrast, we
show that ABCs provably has only a constant factor slow-
down compared to its reinforcement learning counterpart in
the limit case for a stationary environment by converging to
updating the same set of infostates as BQL.

