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Abstract

We consider a platform in a two-sided market with unit-

supply sellers and unit-demand buyers. Each buyer can trans-
act with a subset of sellers it knows off platform and another
seller that the platform recommends. Given the choice of sell-
ers, transactions and prices form a competitive equilibrium.
The platform selects one seller for each buyer, and takes a
fixed percentage of the prices of all transactions that it rec-
ommends. The platform seeks to maximize total revenue.
We show that the platform’s problem is NP -hard, even when
each buyer knows at most two buyers off platform. Finally,
when each buyer values all sellers equally and knows only
one buyer off platform, we provide a polynomial time algo-
rithm that optimally solves the problem.

Introduction

In 2019, Amazon was sued in Europe for favoring some sell-
ers over others at the expense of consumers. It was claimed
to have used the “Buy Box”, a key feature at the top right of
the product page, to draw buyers to Amazon’s own products
or third party sellers who pay hefty delivery and storage fees
to Amazon, obscuring better deals elsewhere (Veljanovski
2022).

For a platform, it is hard to decide how to recommend sell-
ers to buyers. Recommending a high price product to a buyer
risks losing the trade to a competitor off platform. Rec-
ommending a low price product forgoes a possible higher
commission fee. In this paper, we model this for the plat-
form, and characterize the computational complexity when
the platform solves for a revenue optimal strategy.

We formulate the problem in a two-sided market modeled
by a bipartite graph. Buyers and sellers are vertices on either
side of the graph, and edges indicate transaction opportuni-
ties between buyers and sellers off platform. The platform
adds at most one more edge for each buyer and seller. The
market clears according to a competitive equilibrium, sub-
ject to transaction constraints represented by the edges. The
platform’s revenue is proportional to the total price of trans-
actions through the edges it adds. We show that the plat-
form’s problem of selecting which set of edges to add is
computationally hard.
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Related Work

Most related to our work is the study of competitive
equilibrium prices on network-formation games (Even-Dar,
Kearns, and Suri 2007). Kranton and Minehart (2000) and
Elliott (2015) leverage the network decomposition theorem

to relate prices in a network to the opportunity path of the
trading agent. We make use of their structural result in the
analysis of this paper. These works, however, typically do
not assume an intermediary or platform that facilitates trade
to gain revenue.

More recent works in the computer science literature
model the platform explicitly. Condorelli, Galeotti, and Re-
nou (2017); Kotowski and Leister (2019) treat the platform
as a liquidity provider that buys and sells as a part of the
trading network. The closest to ours is Eden, Ma, and Parkes
(2023). They model sellers’ and buyers’ incentives to join
the platform and analyze the social welfare when the plat-
form chooses the commission fee strategically. We instead
analyze the platform’s matching problem.

From another perspective, recommender systems give
personalized suggestions to each user independently, while
maximizing overall welfare (Mladenov et al. 2020). We help
the recommender maximize revenue, while accounting for
the effect that a recommendation has on other buyers within
the competitive equilibrium.

Our Model

We adopt the buyer-seller network model used by Kran-
ton and Minehart (2000). Formally, the two-sided market is
defined by a bipartite graph G = (B,S,E), where B =
{b1, . . . , bn} represents the set of n unit-demand buyers,
S = {s1, . . . , sm} the set of m unit-supply sellers, and E

the possible transaction opportunities. That is, a buyer bi and
seller sj can only transact if (bi, sj) 2 E. Each buyer bi val-
ues seller sj’s item at value vij , and each edge eij 2 E has
corresponding weight vij .

The market clears according to a competitive equilibrium,
subject to transaction constraints. A competitive equilibrium
is defined by a set of transactions that correspond to a maxi-
mum weight matching on G, along with a set of item prices
pj that supports the equilibrium. Further assume sellers are
able to extract the maximum amount of surplus from the
market, charging the highest prices that still yield a com-
petitive equilibrium. Gul and Stacchetti (1999) showed that



Figure 1: World edges are shown in black, and the revenue-
optimal platform edges are in pink. Buyers have homoge-
neous valuations (i.e. buyer 1 has value 10 for all items).
In the revenue-optimal platform strategy, all transactions
occur through platform edges, with item prices given by
p1 = p2 = 9, p3 = 3, p4 = 1.

these prices are defined by pj = W (B,S,E) � W (B,S \
{sj}, E), where W (G) denotes the weight of the maximum
weight matching on G.

To model the platform’s role in the market, we consider an
existing set of world edges Ew, representing transaction op-
portunities available to buyers and sellers off platform. The
world bipartite graph is thus given by Gw = (B,S,Ew).
Seeing Gw and possessing knowledge of all vij , the platform
chooses to add a set of platform edges Ep (with Ep \Ew =
;) between buyers and sellers, recommending further trans-
actions that can occur on-platform. 1 The platform problem
is to find the set of platform edges, along with a maximum
weight matching, that maximizes the sum of item prices sold
via platform edges.

Our Contributions

We begin with the following theorem, which shows that the
platform’s problem is NP-hard, even when buyers know at
most two sellers off platform (i.e., deg(bi)  2 in Gw).
Theorem 1. The decision version of the platform problem

is NP-hard, even when vij 2 {0, vi} and each buyer has at

most two existing world edges.

Proof Sketch. The proof modifies that of Chen and Deng
(2014) for revenue-maximizing envy-free pricing and re-
duces from a version of 3-SAT. Unlike a competitive equi-
librium, envy-free pricing does not require unsold items to
have price 0; to address this, we introduce dummy buyers
Di whose values are maximal among all buyers, which ef-
fectively acts to mimic the optimal envy-free pricing mech-
anism.

Theorem 1 requires that some buyers know at least two
sellers via world edges; one might then ask if the platform
problem is still hard when we assume that buyers know at
most a single buyer off-platform. If one additionally restricts

1WLOG, all platform edges transact. If not, one can show
that the platform can drop the non-transacting platform edges and
weakly increase revenue.

buyers to have homogeneous valuations (vij = vi for all j),
we show that the platform problem becomes tractable.

Denote a seller subgraph Sj as the set of edges and buy-
ers that seller sj connects to – note that the Sj are disjoint in
this setting. Sort and rank all seller subgraphs by the highest-
value buyer in the subgraph S1, . . . Sm. Figure 1 provides
such an example market. With any set of platform edges
that transact, seller subgraphs are connected into cycles and
chains. We show an example of the structure with Figure 1
here.

S4 ! S3| {z }
Chain

! S2 ! S1 ! S2| {z }
Cycle

Lemma 1. When buyers have homogeneous valuations and

each buyer has at most one existing world edge, there exists

a platform-optimal strategy, where the resulting transactions

connect seller subgraphs into cycles and at most one chain.

All cycles and chains connect contiguous (in sorted order)

subgraphs. Cycles are of length at most three. The chain

connects to a cycle.

Note that the revenue-optimal strategy indeed satisfies this
lemma for Figure 1. We now prove the following theorem.
Theorem 2. When buyers have homogeneous valuations

and each buyer has at most one existing world edge, the

platform problem can be solved in O(n2) time.

Proof. Fix an arbitrary contiguous cycle (of length at most
3) for the chain to attach to. Consider the graph G

0 obtained
by removing all the subgraphs in the cycle from Gw.

Let DP [i] denote the maximum obtainable revenue from
connecting the first i subgraphs in G

0 via cycles, obtainable
in linear-time via Dynamic Programming. Let R[i] be the
revenue from linking all subgraphs after i in a chain. It fol-
lows that the optimal revenue, given that a chain must attach
to the fixed cycle, is given by maxi DP [i] +R[i].

The maximum revenue can be obtained by repeating this
process for all O(n) possible fixed cycles. Going through
each fixed cycle takes linear time, so the whole algorithm
takes time O(n2). Note that this exhaustively searches all
choices of the fixed cycle and thus finds the optimal config-
uration satisfying the properties of Lemma 1. By Lemma 1,
there exists an optimal solution that satisfies these properties
and thus we find it, concluding the proof.

Conclusion and Future Work

In this work, we model the possible transaction relationships
between buyers and sellers, and we analyze how a platform
strategically matches buyers to sellers to maximize its rev-
enue. We develop an efficient algorithm for homogeneous
good market where each buyer only knows one buyer in the
world, and provide hardness results for the general case.

There are a number of promising directions for future
work. While the general problem is NP-hard, we would like
to design efficient approximation algorithms. Additionally,
we assume that the platform possesses complete knowledge
of buyer valuations; what can the platform achieve in the
case of partial information? Finally, one might want to ana-
lyze the welfare properties of the platform-optimal strategy.
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1 Competitive Equilibria
As a preliminary, this section formally defines competitive
equilibria on a buyer-seller network model and is taken from
the authors’ unpublished work (Eden, Ma, and Parkes 2023).

We adopt the buyer-seller network model of (Kran-
ton and Minehart 2000). There is a set of n buyers,
B = {b1, . . . , bn}, and m differentiated sellers, S =
{s1, . . . , sm}. Each seller has a single product to sell, and
each buyer bi has a unit-demand valuation. Buyer bi’s value
for seller sj’s product is vij � 0. A bipartite graph G =
{gij}bi2Bsj2S models which buyers and sellers can directly
transact, where

gij =

⇢
1 Buyer i can directly transact with seller j
0 Otherwise

. (1)

We define a competitive (Walrasian) equilibrium in the
buyer-seller network model.
Definition 1.1 (Competitive Equilibrium). A competitive
equilibrium for the buyer-seller network G is a tuple (p,a)
where p = (p1, . . . , pm) are non-negative item prices, a =
{aij}i2Bj2S 2 {0, 1}n⇥m is an allocation of the goods to
the buyers, and:
• Transactions must respect links: aij  gij 8i 2 B j 2
S.

• Buyers are allocated at most one good:
P

j aij 
1 8i 2 B.

• Goods are sold at most once:
P

i aij  1 8j 2 S.
• Buyers gets their most preferred outcome: ui(p,a) �
vij � pj 8i 2 B j 2 S. where

ui(p,a) =
X

j

aij(vij � pj), (2)

is buyer i’s utility for the allocation.
• Buyers have non-negative utility: ui(p,a) � 0 8i 2 B.
• Unassigned goods have price 0.

A competitive equilibrium is a canonical model of the
steady state in a market, capturing the notion of prices that
are set such that supply meets demand. It follows from
standard existence results (Kelso and Crawford 1982) that

Copyright © 2024, Association for the Advancement of Artificial
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a competitive equilibrium always exists in a unit-demand
buyer-seller network (a missing edge can be represented as
vij = 0). Moreover, competitive equilibria have a number of
desirable properties.
Theorem 1.1 (First Welfare Theorem). In a competitive
equilibrium, the social welfare is maximized with respect to
the set of allocations that respect the transaction constraints
posed by G.
Theorem 1.2 (Second Welfare Theorem (Gul and Stacchetti
1999)). Let (p,a) and (p0

,a0) be two competitive equilibria
of a buyer-seller network G, then (p,a0) is also a competi-
tive equilibrium (and so is (p0

,a)).
The Second Welfare Theorem implies that prices have the

property of either forming a competitive equilibrium with
any social-welfare optimal allocation, or forming a competi-
tive equilibrium with none of them. We refer to prices p that
are part of a competitive equilibrium as competitive prices.
It is also well known that competitive prices have a lattice
structure.
Theorem 1.3 (Lattice structure for competitive prices (Gul
and Stacchetti 1999)). Let p1 and p2 be competitive prices,
then p1_p2 and p1^p2 are also competitive prices, where
_ is the coordinate-wise maximum and ^ is the coordinate-
wise minimum.

As a result, there are minimum and maximum competitive
prices, denoted p and p respectively, with item-wise min-
imum and item-wide maximum prices denoted p

j
and pj .

For S sellers, B buyers, network G, and buyer values v, we
use W (B,S,v, G) to denote the optimal welfare from all
feasible transactions between sellers S and buyers B. When
clear from context, we omit v from the notation. We will
make use of the following characterization result.
Theorem 1.4 (Characterization of competitive prices (Gul
and Stacchetti 1999)). The maximum competitive price for
an item j has the following form:

p
j
= W (B,S [ {sj}, G)�W (B,S,G) (3)

pj = W (B,S,G)�W (B,S \ {sj}, G). (4)

Here, S[{sj} denotes adding another copy of seller sj with
all its edges to the market, and S \ {sj} is removing seller
sj and all its connected edges from the market. The resulting



graph changes correspondingly when adding or removing sj

with all its edges, but for notational convenience we still use
G to denote the graph.

2 Characterizations of the Optimal Platform
Strategy

Recall from the extended abstract the optimal platform strat-
egy is the set of platform edges that maximizes the sum of
item prices sold via platform edges in the resulting compet-
itive equilibrium. Here, we provide two basic characteriza-
tions of the optimal platform strategy, which will be useful
in the proof of Lemmas 4.7 and 4.6. Clearly, when Ew = ;,
revenue is entirely aligned with welfare, so the platform
computes the maximal welfare matching, which can be done
in polynomial time. Thus, we restrict our attention to cases
where Ew is nonempty.
Lemma 2.1. Platform’s revenue-optimal strategy adds at
most one edge to each buyer and seller.

Proof. Let Et denote the set of edges where transactions
take place in competitive equilibrium. Assume the platform
adds two or more edges to a buyer or seller in Ep, by unit-
supply unit-demand there exists edge eij = (bi, sj) 2 Ep

such that eij /2 Et. Removing eij does not change seller
sj’s price, because

W (B,S,G \ {eij}) = W (B,S,G)

W (B,S \ {sj}, G \ {eij}) = W (B,S \ {sj}, G)

Removing eij weakly increases other sellers s
0
j price, be-

cause

W (B,S \ {s0j}, G \ {eij})  W (B,S \ {s0j}, G)

Thus the platform weakly prefers to drop eij that are not
transacting.

Lemma 2.2. For platform’s revenue-optimal strategies, ei-
ther all sellers sell or all buyers buy. If n = m, all buyers
and sellers transact.

Proof. We consider the case when there are weakly more
buyers than sellers, though the opposite case follows simi-
larly. Take any equilibrium where a seller sj does not trans-
act. As there are at least as many buyers as sellers, there
must be a buyer bi who also does not transact (and thus does
not have an edge connecting them to sj by the First Welfare
Theorem). Consider connecting the two via a platform edge
eij = (bi, sj) 2 Ep.

Clearly, we obtain an increase in revenue from this new
transaction. Now, consider any other seller s0j . Let G be the
graph before adding edge eij , the change in s

0
j’s price is ex-

pressed as ps0j
(G) = W (B,S,G) � W (B,S \ {s0j}, G),

ps0j
(G[ {eij}) = W (B,S,G)+ vij �W (B,S \ {s0j}, G[

{eij}). We will show that ps0j (G [ {eij}) � ps0j
(G). It suf-

fices to prove

vij � W (B,S \ {s0j}, G [ {eij})�W (B,S \ {s0j}, G)

If max weight matching in (B,S \{s0j}, G[{eij}) does not
use the new edge eij , then the RHS is equal to zero and we
are done.

Suppose eij is in the max weight matching, then

W (B,S\{s0j}, G [ {eij}) = W (B \ {bi}, S \ {sj , s0j}, G)

+ vij  W (B,S \ {s0j}, G) + vij

This is precisely the inequality we want to prove. Thus all
other sellers s0j’s price weakly increases. So by matching sj

to bj , the platform’s revenue strictly increases.

The analysis for Lemma 2.2 and 2.1 does not require ho-
mogeneous good assumption, and can cater for general val-
uation markets.

3 Proof of NP-Hardness
In this section, we prove the following theorem, establishing
hardness for the decision version of the platform problem.
Theorem 3.1. The decision version of the platform problem
is NP-hard, even when vij 2 {0, vi} and each buyer has at
most two existing world edges.

Similar to that in (Chen and Deng 2014) for revenue-
maximizing envy-free pricing, Theorem 3.1 is a result of the
following reduction and Lemma 3.1.

Consider a modified version of 3SAT, where each variable
xi appears positively (xi) and negatively (x̄i) an equal num-
ber of times. Given a 3CNF, we add clauses di = (xi _ x̄i)
for each variable xi. Additionally, we pad the 3CNF with
these clauses such that each variable xi appears exactly 2t
times for some t > 0.

Denote our modified 3CNF by (c1 ^ · · · ^ ck). Let q be
the number of unique variables, and let N = q · k · t.

Given this 3CNF, we construct an instance of our problem
as follows. There are k+2(t�1)·q+(2t·q�k) = (4t�2)·q
buyers in total and an equal number of items. We describe
the construction below:

• For each variable xi, we construct 2t items ↵i,j ,�i,j ,
j 2 {0, . . . , t � 1}. The ↵i,j are meant to represent the
positive instances of xi while the �i,j represent the neg-
ative instances. WLOG, let ↵i,0,�i,0 be the items that
correspond to clauses di = (xi _ x̄i).

• For each clause ci in our 3CNF, we add a buyer Ui that
has value N for each item that represents the correspond-
ing literals in clause ci.

• For each variable xi, we add 2(t � 1) buyers Ai,j , Bi,j ,
j 2 {1, . . . , t� 1}. We also add 2(t� 1) items �i,j , �i,j ,
j 2 {1, . . . , t � 1}. Each buyer Ai,j has value N + 1
for ↵i,0,↵i,j , �i,j , and each buyer Bi,j has value N + 1
for �i,0,�i,j , �i,j . For each of these buyers, we add world
edges to the ↵i,j ,�i,j they have positive value for.

• Finally, we add 2t · q� k dummy buyers who have value
M � N + 1 for all ↵i,j ,�i,j .

All buyers have value 0 for all items not mentioned above.
Finally, we conclude with the proof that this is indeed a valid
reduction.



Lemma 3.1. There is a valid assignment to the original
CNF if and only if the optimal revenue is at least D :=
kN + q(t� 1)(2N + 1) +M · (2t · q � k).

Proof. Suppose we have a valid assignment to our original
CNF. Then there exists a matching between our buyers Ui

and items ↵i,j ,�i,j such that no buyer Ui is matched to an
item ↵i,j where xi is false or an item �i,j when xi is true.
We draw these as platform edges. For each buyer Ai,j , Bi,j ,
we add platform edges to items �i,j and �i,j respectively. Fi-
nally, we add platform edges between each dummy item and
a single unsold item so that all items are sold on platform.

The maximum weight matching then assigns buyers Ui

their corresponding items via the platform edges. Each Ai,j

gets item �i,j and each Bi,j gets item �i,j . Finally, the
dummy buyers are matched to the remaining (2t · q � k)
items that have not already been sold. As all items are sold
and the minimum valuation for any buyer for any item they
receive is N , it follows that the price paid for any item is at
least N .

We get revenue N ·k from the Ui. If xi is true, ↵i,0 is sold
to a buyer Ui, so Ai,j has price N as it has an opportunity
path to this buyer. However, for Bi,j , both �i,0 and �i,j are
sold to dummy buyers – thus, removing �i,j would leave Bi,j

with no item, reducing welfare by N + 1. It follows that
Bi,j must pay N + 1. Thus, 8j, Ai,j has price N and Bi,j

has price N + 1. The converse holds when xi is False. In
conclusion, from each Ai,j and Bi,j , we get revenue (t �
1) · N + (t � 1) · (N + 1) = (t � 1)(2N + 1). Finally,
we get revenue M · (2t · q � k) from the dummy buyers as
they are only connected to a single item. Thus, in total we
get revenue kN + q(t� 1)(2N +1)+M · (2t · q� k) = D

as desired.
Now, suppose that there exists a set of platform edges and

a matching that generates revenue at least D. Then it must
be the case that each buyer Ui gets an item as otherwise we
could have maximal revenue (k � 1)N + q · 2(t � 1)(N +
1) + M · (2t · q � k) < D. For each Ui corresponding to
clause di = (xi _ x̄i), they must receive either ↵i,0 or �i,0.
We construct our satisfying assignment as follows:

• If Ui receives ↵i,0, set xi to True.
• If Ui receives �i,0, set xi to False.

It suffices to show that this is a satisfying assignment. To do
this, we show that no buyer Uk receives an item ↵i,j when
xi is False or an item �i,j when xi is True.

If xi is True, Ui is allocated ↵i,0. Thus, removing the
seller that Ai,j transacts with (if one exists) can yield at most
a reduction of N in total welfare, as we could always connect
Ai,j with ↵i,0 and drop Ui from the matching. Similarly, if
xi is False, we can get at most revenue N from Bi,j .

Thus, the platform makes revenue at most N from each
buyer Ai,· or Bi,· that corresponds to the true literal. For
the false literal, note that the platform has to get maximal
revenue N + 1 from the corresponding buyer because D �
(k� q)N �M · (2t · q�k)� q(t�1)N = q(t�1)(N +1).
If Ui receives an item corresponding to the false literal, then
the buyer Ai,· or Bi,· that corresponds to the false literal will
only pay price N , contradicting the above.

It follows that our assignment is indeed a satisfying as-
signment as desired, concluding the proof.

4 Constant Valuation AMOS Setting
Here, we examine the constant valuation AMOS (at most
one seller) case, where buyers have homogeneous valua-
tions and have at most one incident world edge. We give
a quadratic time algorithm to solve the platform’s revenue-
maximization problem.

Opportunity Paths
We first introduce the concept of opportunity paths, which
will be crucial in our analysis of the AMOS setting. This is
taken from the authors’ unpublished work (Eden, Ma, and
Parkes 2023).

For homogeneous good markets, competitive prices are
directly related to a buyer’s next best forgone trade opportu-
nity, or more specifically its direct and indirect competitors.
This notion is characterized by opportunity paths in Kranton
and Minehart (2000) as follows.
Definition 4.1 (Opportunity Path (Kranton and Minehart
2000)). For an allocation a of goods on a buyer-seller net-
work G, buyer i1’s opportunity path linking to another buyer
it is a path

(i1, j1, i2, j2, . . . , jt�1, it),
where for every ` 2 {1, . . . , t� 1},

gi`,j` = 1 and gi`+1,j` = 1,

and
ai`,j` = 0 and ai`+1,j` = 1.

Kranton and Minehart (2000) show the following connec-
tion between buyers’ opportunity paths and sellers’ maxi-
mum competitive prices, which we make use of.
Theorem 4.1 (Opportunity Path Theorem (Kranton and
Minehart 2000)). Consider a competitive equilibrium with
maximum competitive prices (p̄,a) where aij = 1. Seller
j’s price p̄j is equal to the lowest valuation of any buyer
linked by an opportunity path from buyer bi. p̄j = 0 if and
only if buyer bi has an opportunity path linking to a seller
who does not sell.

Polynomial-Time Algorithm
Here, we provide a proof of the polynomial time algorithm
to optimally solve for the homogeneous buyer AMOS case.
We first assume that |B| = |S| and will later relax this as-
sumption. By Lemma 2.2, all sellers and buyers transact.
To guarantee maximum revenue, the platform can take the
buyer perspective and make sure every buyer pays the high-
est possible fees. As an intuition, this can be done by rais-
ing the lowest buyer’s valuation on each buyer’s opportunity
path. To facilitate easier analysis, we identify the following
structure in the bipartite graph.
Definition 4.2 (Seller Subgraphs). Denote a Seller Sub-
graph Sj as a collection of nodes and edges Sj := {sj} [
{bi|(bi, sj) 2 Ew} [ {(bi, sj) 2 Ew} to seller sj who is
known by at least one buyer off platform. Let v(Sj) :=
max(bi,sj)2Ew

vi be the value of the largest buyer connected
to sj .



A seller subgraph is a fundamental building block for our
analysis. The world graph Gw = (B,S,Ew) is composed
of seller subgraphs, dangling sellers (sellers with no incident
world edges), and dangling buyers (buyeres with no incident
world edges). Buyers in the same seller subgraph Sj who do
not directly buy from sj have a shared opportunity path by
Theorem 4.1. We further sort and index all seller subgraph
Sj by their value: v(S1) � v(S2) � ... � v(Sm0) where
m

0  m.
Definition 4.3 (Chains and Cycles). Consider a set of trans-
actions on a graph Gp = (B,S,Ew [Ep) such that all buy-
ers and sellers transact. Ep further connects seller subgraphs,
forming chains and cycles. If there are no dangling sellers,
then it is clear that all transactions must be formed of cycles,
as defined below.

Otherwise, starting from a seller sk with no world edges,
consider the path defined as follows:
• For each seller, the next vertex in the path is the buyer

that it transacts with. If this seller has already appeared
in the path, terminate the path.

• For each buyer, the next vertex in the path is the seller
whose subgraph it belongs to. If this is a dangling buyer,
terminate the path.

As there are a finite number of buyers and sellers, this
path must terminate. Additionally, since all buyers and sell-
ers transact, this path must terminate either at a dangling
buyer or at a seller who has already appeared previously in
the path. Given such a path, we define 0-chains, chains, and
cycles as shown below:

sk ! bj| {z }
0-Chain

! si . . .| {z }
Chain

! sj ! · · · ! sj| {z }
Cycle

Note that this path always begins with a dangling seller
transacting with a buyer – we term this part of the path a
0-chain. The chain (if one exists) connects the next seller,
all the way up to, but not including, the seller who begins
the cycle. If the path terminates at a dangling buyer b, we
consider this to be a chain connected to a 0-cycle, where the
0-cycle is simply the dangling buyer b. Additionally, we de-
fine the length of a cycle to be the number of unique sellers
that it includes.

To clean up the proof, from here forward, we will sup-
press any mention of 0-chains and deal only with chains and
cycles, leaving implicit the fact that any extra buyers who
do not belong to a chain or cycle transact with a dangling
seller. Note that the set of chains and cycles uniquely de-
fines the set of transactions (up to deciding which dangling
sellers a buyer transacts with, which does not affect platform
revenue).

We start with the following lemma, which places a con-
straint of the length of any cycles in the optimal solution.
Lemma 4.1. There exists an optimal set of transactions that
can be decomposed into chains and/or cycles. Furthermore,
there exists an optimal solution where all such cycles are of
length at most 3.

Proof. By Lemma 2.2, there exists a platform optimal strat-
egy where all buyers and sellers transact. By Definition 4.3,

this implies that the set of transactions can be decomposed
into cycles and chains.

Let us now bound the length of these cycles. Suppose that
we had a cycle of length at least 4. Then we could always
split this cycle into smaller cycles of length at most 3 (note
that we can represent every integer larger than 3 as a sum of
multiples of 2 and 3). Furthermore, these cycles can only re-
sult in weakly higher revenue among sellers included in the
original cycle as we are decreasing the number of opportu-
nity paths. Finally, any chain connected to the original cycle
can now be attached to the same subgraph in this new split
set of cycles – again, there are fewer opportunity paths, so
each seller in the chain also obtains weakly higher revenue.

It follows that there always exists an optimal solution
where all cycles have length at most 3.

We make the following simple observation about the op-
timal configuration of such cycles and chains.
Observation 4.1. The cycle on k subgraphs that yields opti-
mal revenue connects the highest buyer in each subgraph to-
gether. The optimal-revenue chain connects subgraphs from
smallest to largest in terms of their max-value bidder. The
chain and cycle that yields optimal revenue is constructed
by attaching the optimal chain to the largest second-highest
bidder in any subgraph in the optimal cycle.

In fact, we can also show that there exists an optimal so-
lution with only a single chain.
Lemma 4.2. There exists an optimal solution with only a
single chain. Additionally, this optimal solution can still re-
strict the cycle length to at most 3.

Proof. Suppose we had two chains, each attached to a differ-
ent cycle, or potentially attached to the same cycle. We could
always consolidate these two chains into a single chain and
attach it to the cycle that yields the largest minimum op-
portunity path – all sellers in the chain now receive weakly
more revenue than they were before. This is doable because
each seller subgraph has at least one seller and one buyer to
be connected into a chain. Note that this doesn’t affect the
restriction on cycle length.

To conclude the discussion of the structure of chains in the
optimal solution, we show that these chains must be contigu-
ous and moreover, chains “fill out” the rest of the subgraphs
once started.
Lemma 4.3. If Si is part of a chain in the optimal solution,
then Sj is also part of this chain, for j > i, provided that Sj

is not part of the cycle that the chain attaches to.

Proof. Suppose otherwise. Consider the optimal solution
with at most one chain. Since Sj is not part of a chain, it
must be part of a cycle. As this solution is optimal, it must be
the case that adding this whole cycle to the chain decreases
the overall revenue. That is, the minimum opportunity path
in Sj’s cycle is larger than the minimum opportunity path in
the cycle that Si’s chain is attached to.

However, this implies that we could add Si to Sj’s cycle,
increasing the revenue generated from the seller in Si with-
out affecting the revenue from any of the sellers in Sj (as Si



has a larger max-value buyer than Sj), which is a contradic-
tion.

Lemma 4.4. Suppose that there is a chain in the optimal
solution that connects to a cycle C, and let Smin,C be the
smallest subgraph belonging to C. Then there exists an opti-
mal solution where no subgraph larger than Smin,C is part
of the chain.

Proof. Suppose otherwise. If there are two or more such
subgraphs, then we could always connect them in a cycle,
and their minimum opportunity path would be weakly larger
than that obtained by placing them in the chain. If there is a
single such subgraph, we could add it to C – note that this
does not affect the minimum opportunity path of the chain or
of the sellers in C and weakly increases the revenue obtained
from this subgraph.

If at any point during this process, we obtain a cycle with
more than three subgraphs, we can simply split it up into
smaller cycles, preserving our desired property.

Observation 4.2. Note that this implies that once a sub-
graph is part of a chain, all smaller subgraphs (in terms of
max bidder value) must also be part of this chain.

We make one final observation regarding the structure of
the optimal solution – namely, all cycles in the optimal so-
lution can be made to be contiguous.
Lemma 4.5. There exists an optimal solution where all cy-
cles are contiguous.

Proof. Suppose we have an optimal solution satisfying
all the above properties where at least one cycle is non-
contiguous. Let Sm be the smallest subgraph that belongs
to a non-contiguous cycle (clearly Sm 6= S1).

Firstly, if Sm is a part of a three-cycle Sa�Sb�Sm. If a <

b�1, then we can connect Sb�Sm in a two cycle. By Lemma
4.5, Sb�1 cannot be in the chain otherwise Sb and Sm would
be in the chain. Thus, Sb�1 is in a cycle. We attach Sa to the
cycle that Sb�1 is in. This weakly increases Sa’s revenue
because Sb�1 only connects to larger seller subgraphs.

Now we can focus on non-contiguous two-cycles Sa�Sm

and three-cycles Sa � Sa+1 � Sm. Again, by Lemma 4.5,
Sm�1 cannot be a part of the chain otherwise Sm would
have been in the chain as well. There are two cases. Sup-
pose that the second highest bidder in Sm�1 has a weakly
higher valuation than the highest bidder in Sm. Consider the
following alternative configuration. Connect Sm to Sm�1 as
a chain. (If a chain is already connected to Sm�1, add Sm

to this chain.) Combine the two cycles that Sm�1, Sm be-
longed to (save for Sm, works also if Sm�1 is in a 1-cycle.)
Additionally, keep any existing chains that were connected
to any of the subgraphs involved in the two cycles.

Note that all subgraphs that were previously connected to
Sm via a cycle now have weakly increased revenue – the
minimum opportunity path in the new cycle is now Sm�1

rather than Sm. All subgraphs that were previously con-
nected to Sm�1 have the same revenue; all such subgraphs
still have Sm�1 as their smallest opportunity path within the
cycle. It is easy to verify that all chains also have weakly
higher revenue.

Now, consider the second case where the second highest
buyer in Sm�1 has a smaller valuation than the highest bid-
der in Sm, or Sm�1 does not have a second world buyer.
There are now a couple of possible cases:

• Two or more subgraphs were previously connected to
Sm, Sm�1. Connect Sm, Sm�1 in a two-cycle. In this
case, connect all the subgraphs that were previously con-
nected to Sm, Sm�1 together into a single cycle. Note
that we lose v(Sm�1) � v(Sm) in revenue from con-
necting Sm and Sm�1 together, but we gain at least
v(Sm�2)� v(Sm) from the other subgraphs.

• Sm belonged to a 2-cycle and Sm�1 belonged to a 1-
cycle. If the other subgraph in the Sm cycle was Sm�2,
then connect Sm�2, Sm�1 together and leave Sm as a 1-
cycle. Note that we get weakly more revenue from Sm�2

in this case, and a 1-cycle with Sm is less costly than a
1-cycle with Sm�1.

• Sm belonged to a 2-cycle and Sm�1 belonged to a 1-
cycle. Connect Sm, Sm�1 in a two-cycle. If the other
subgraph in the Sm cycle was not Sm�2, connect the
other subgraph in Sm’s cycle to the cycle that Sm�2 is
currently a part of. Note that we gain v(Sm) from con-
necting Sm and Sm�1 together, and at least v(Sm�2) �
v(Sm) from the other subgraphs.

In all the above cases, we keep all existing chains as they
are – they are weakly better off under this new configura-
tion because the second highest buyer in Sm�1 is smaller
than v(Sm). We continue this process until there are no non-
contiguous cycles, at each step weakly increasing our rev-
enue. If at step t, the smallest subgraph belonging to a non-
contiguous cycle is Sm, then at step t + 1, the process en-
sures that the smallest possible subgraph belonging to a non-
contiguous cycle is Sm�1, meaning that this process must
terminate.

Corollary 4.1. There exists an optimal solution where all
cycles are contiguous, there is (possibly) a single contiguous
chain, and all cycles are limited to length 3 or less.

Finally, we have placed sufficient structure on the opti-
mal solution to be able to develop a poly-time algorithm.
In essence, we restrict our search to configurations such as
those described in the above corollary.
Theorem 4.2. There exists a poly-time algorithm for the
AMOS case, when |B| = |S|.

Proof. Fix an arbitrary contiguous cycle for the chain to at-
tach to. Note that we are limited to 0, 1, 2, or 3-cycles, for
which there are O(n) possibilities. Fixing this cycle, con-
sider the induced graph G

0 obtained by removing all the sub-
graphs in the cycle from the original graph.

Let DP [i] denote the maximum obtainable revenue from
connecting the first i subgraphs in G

0 via cycles. Filling in
the base cases for DP [1], DP [2], DP [3], we have the fol-
lowing recurrence:

DP [i] = max(DP [i� 3] + 3-cycle revenue,
DP [i� 2] + 2-cycle revenue, DP [i� 1] + 1-cycle revenue)



Let R[i] denote the revenue obtained from linking all sub-
graphs after i in a chain. It follows that the optimal revenue,
given that a chain must attach to the fixed cycle, is given by
maxi DP [i] +R[i].

Repeating this process for all O(n) possible fixed cycles,
we can take the maximum revenue from any of these config-
urations. This process takes linear time, so the whole algo-
rithm takes time O(n2). Note that this exhaustively searches
all choices of the fixed cycle and thus finds the optimal con-
figuration, where cycles are of length at most 3, there is at
most one chain, and this chain is contiguous. By Corollary
4.1, there exists an optimal solution that satisfies these prop-
erties and thus we find it, concluding the proof.

Lemma 4.6. When n = |B| > |S| = m, sort buyers by
their valuation, and denote the set of the m largest buyers by
Bm = {b1, b2, ..., bm}. Then perform the revenue-optimal
matching on S,Bm while ignoring B \Bm. This is revenue
optimal.

Proof. By Lemma 2.2, there exists a revenue-optimal trans-
action where all sellers trade. Otherwise, all sellers connect-
ing to this non-trading seller through an opportunity path
have a price of zero. By adding an edge between this seller
and a non-trading buyer (guaranteed to exist as |B| > |S|),
other sellers’ prices weakly increase.

Further, no buyer in B \ Bm trades. Suppose otherwise
and take any configuration where a buyer in B \Bm trades.
Let bmin be the smallest trading buyer, and let bmax be the
largest non-trading buyer, noting that v(bmin) < v(bmax).
Suppose that bmin currently transacts with seller s.

As the market clears according to the maximum weight
matching, it must be that s is not connected to bmax – oth-
erwise, matching them would yield a strictly higher welfare
matching. Thus, we can add a platform edge from s to bmax,
ensuring that they transact in the new matching. Note that
bmin no longer transacts as it was the minimum value trans-
acting buyer, and thus the maximum welfare matching can
no longer include it.

We claim that all sellers’ prices weakly increase. The only
modified opportunity paths that previously existed are those
which previously went through bmin – as previously men-
tioned, there are no opportunity paths that terminate at a
non-trading seller, so this was the minimum possible oppor-
tunity path. Now, no opportunity paths terminate at bmin (as
they no longer trade), meaning that the minimum opportu-
nity path weakly increased (in the event of a tie with bmin).

We can continue this process until no buyers in B \ Bm

trade. Buyers not trading will not be in any opportunity path
hence not affect the characterization results nor optimality
of the procedure in Theorem 4.2.

Lemma 4.7. When n = |B| < |S| = m, discard m � n

of the sellers who do not have world edges, and perform
the revenue-optimal matching on the induced graph. This is
revenue optimal.

Proof. By Lemma 2.2, note that there exists a revenue op-
timal matching in which all buyers transact. Suppose that
there is a seller s who has at least one adjacent world edge

who does not transact. Consider any buyer b who is in seller
s’s subgraph.

Clearly, buyer b must transact with some seller s
0 via a

platform edge (as they do not transact with the seller in their
subgraph). Consider eliminating this platform edge (b, s0).
No revenue is lost from b as they had an opportunity path
to s, who did not transact, so they paid price 0. Secondly,
any sellers who previously had opportunity paths to b also
received price 0, so removing this edge does not decrease
their price either.

It follows that there exists a revenue optimal matching
where all sellers with an adjacent platform edge transact,
which implies that we can eliminate m � n sellers with no
adjacent world edges, as they would not transact in this rev-
enue optimal matching regardless.
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