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Abstract

In this paper, we explore the effectiveness of different kidney matching algorithms under
practical constraints. While maximum-cardinality approaches provide clear theoretical
advantages in the case of perfect compatibility, algorithmic matches are by no means
guaranteed to work in practice. In fact, Dickerson et al. (2018) find that 93% of all
algorithmic matches never result in a transplant. To address this problem, they propose
a failure-aware algorithm that maximizes the expected number of transplants while
taking into consideration the risks of failed matches. We expand upon the results of
Dickerson et al., creating a dynamic, multi-round simulator to test various different
algorithms under these considerations of failed matches.

We also propose a new failure-robust longevity-aware (FRLA) matching algorithm
meant to minimize the expected number of deaths in the transplant network rather
than maximizing the expected number of transplants. Simulations suggest that FRLA
outperforms failure-aware matching and other traditional matching algorithms in two
key metrics – the number of total deaths in the exchange and the total number of
lives saved by our transplants. These advantages are particularly evident when there
is a high mean and variance among the death probabilities of the patients. Future
directions for analyzing FRLA are suggested.

§1 Introduction

Matching algorithms play an important role in the setting of kidney-paired donation,
in which participants are patient-donor pairs who look to participate in chains and
cycles to donate and receive kidneys. In the course, we’ve discussed the maximum
cardinality matching approach, which provides a Pareto dominant matching. While in
theory, this would maximize the possible number of transplants at a given time of the
model (under the assumption that all matches will result in transplants), there arise a
number of complications with this design in practice. In particular, this simple model
does not consider the dynamic nature of the system; patients and donors are continuously
joining and leaving the system. It also fails to take into consideration the probabil-
ity that matches may fail to result in transplants; with close to 93% of all proposed
algorithmic matches failing [3], this is an extremely real and extremely important concern.

1

https://lucadwong.github.io/kidney_solver/


CS136 Final Project 2 THEORETICAL BACKGROUND

The reasons for these failed transplants are numerous and include positive crossmatches,
a type of incompatibility beyond simple ABO incompatibility. Additionally, agents may
decide to leave the exchange, be “sniped” by a different kidney exchange, die, or exit for
some other reason. While efforts have been made to address this issue, they typically do
so in the context of maximizing the expected number of transplants that occur. This
paper modifies the traditional objective function of kidney matching, viewing the ultimate
goal of a kidney exchange to save the lives of patients. Assuming that doctors have a
good idea of a patient’s condition, this information should be made readily available
to an exchange. We propose a new algorithm, failure-robust longevity-aware (FRLA)
matching, that takes this into consideration and attempts to minimize the number of
patients in the exchange who die.

The rest of this paper is devoted to explaining the theoretical underpinnings of FRLA and
evaluating its efficacy through dynamic, multi-round simulations. Section 2 provides some
theoretical background on FRLA, section 3 discusses the results of our simulations, and
section 4 showcases our visualizations and website. Section 5 offers some final conclusions
while section 6 considers possible directions for future work with the FRLA algorithm.

§2 Theoretical Background

In this section, we present our failure-robust longevity-aware (FRLA) algorithm to
minimize the expected number of deaths in our network.

§2.1 Failure-Aware Matching

Dickerson et al. propose a failure-aware matching algorithm designed to address the
problem of algorithmic matches failing to result in real-life transplants. Given that each
transplant has a probability of failing, the failure-aware matching algorithm maximizes
the expected number of transplants that will occur. For more on the underlying details
of this algorithm, see the original paper. [3]

§2.2 Failure-Robust Longevity-Aware (FRLA) Matching

While failure-aware matching maximizes the expected number of matches conditional on
the risk of a transplant failing, this might not be the most important goal for a kidney
exchange. If we consider the purpose of a kidney exchange to be to save lives through
kidney transplants, our objective function would attempt to minimize the expected
number of deaths in the network, or in other words, to maximize the expected number of
lives saved by the exchange. This is the motivation behind our FRLA matching algorithm.

Formally, let de denote the probability that the patient at the terminal node of edge e
dies in the current round and let fe denote the probability that edge e fails to result in
a transplant. We can now model the utility of the kidney exchange as a function of a
given matching.

Specifically, the kidney exchange’s utility is given by the sum of the current round death
probabilities of all patients who successfully receive a kidney. In any given static round, the
exchange wishes to maximize the expected number of deaths prevented due to the kidney
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matching, yielding utility that depends on the sum of current round death probabilities
(or the number of expected deaths saved due to the given matching).

Assumption 2.1 (Kidney Exchange Utility Function)

We assume that we have the following utility function for kidney exchanges for a
given matching M.

U(M) =
∑
c∈M

u(c)

where the utility of a cycle or chain c is given by∑
e∈c

(de · 1e)

where 1e is the indicator function for whether or not the transplant represented by
edge e actually occurs.

Under this assumption, we can calculate the expected utility of adding a given cycle
to our matching. Note that if a single transplant in a cycle fails, then the whole chain
breaks down as we cannot leave any stranded patients in a patient-donor pair.

Claim 2.2 (Expected Utility of Cycles) — The expected utility – measured by the
expected number of deaths prevented – of any given cycle c is given by

E[u(c)] =

[∑
e∈c

de

]
·
∏
e∈c

(1− fe)

Similarly, we can calculate the expected utility of adding a given k-chain (a chain with
k edges) to our matching. Note that unlike cycles, a failed transplant in a chain only
affects those patients who follow in the cycle; all previous transplants will have already
occurred.

Claim 2.3 (Expected Utility of Chains) — Let ℓn denote the nth edge of our given
k-chain ℓ. Then the expected utility – measured by the expected number of deaths
prevented – of ℓ is given by

E[u(ℓ)] =
k∑

j=1

[
dℓi ·

j∏
i=1

(1− fℓi)

]

Having calculated the expected utility of including any given cycle or chain, we thus
define the FRLA algorithm to be the algorithm that returns the matching with the
highest expected utility.
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Claim 2.4 (The FRLA Algorithm) — Below, we provide the IP formulation for the
FRLA algorithm where C is the set of all possible cycles and chains in our network
V .

max
yc

E[u(c)] · yc

s.t.
∑

c∈C s.t. v∈c

yc ≤ 1, ∀v ∈ V

yc ∈ [0, 1], ∀c ∈ C

Note that we can cap the length of our cycles and chains in C to obtain an approximation
to the optimal matching under our given utility function. When simulating, we will do
so to ensure that the algorithm is not too costly.

However, it is important to note that the FRLA algorithm already does this for us –
longer chains and longer cycles are implicitly penalized by the algorithm since a single
failed transplant threatens to destroy an entire cycle or much of a chain. The FRLA
algorithm will tend to favor shorter chains and cycles to longer ones, even at the cost of
the total cardinality of our matching. To illustrate this attribute of the FRLA algorithm,
consider the following analysis.

Optimal Cycle Length: Assume that death probabilities and failure probabilities
are uniform across all patients and edges and equal to d and f respectively. What is
the optimal length of a given cycle under the FRLA algorithm, ignoring all other
existing or potential chains/cycles in the graph?

For a cycle c of length k, the expected utility is given by Claim 2.2, so maximizing
this, we have

argmax
k≥2

E[u(c)] = argmax
k≥2

k · d · (1− f)k

= argmax
k≥2

k · (1− f)k

For sufficiently large f (roughly above 0.3), this is maximized at k = 2, meaning that
we prefer 2-cycles, the shortest possible cycle, to all other cycles. Thus, FRLA (and
Failure-Aware Matching) will prioritize shorter cycles and chains compared to the
typical maximum cardinality algorithm.

Having established the theoretical properties and motivation behind the FRLA algorithm,
we proceed to Section 3, where we analyze the FRLA algorithm through a variety of
simulations and compare it to its counterpart algorithms.

§3 Simulated Results

Here, we present the results of the simulations run using a variety of different algorithms
under different conditions.
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§3.1 Setup

§3.1.1 Github Repository

All our code is located in the following Github, modified from James Trimble’s original
repository. [5] We modified the original repository to accommodate dynamic, multi-round
simulations with agents entering and exiting the exchange over time. Our contributions
are located primarily in the main.py file, which is entirely our creation.

§3.1.2 Patient/Donor Generation

We generated our own patient donor pairs with the following blood type distribution.
Note that we have AB patients and O donors despite the fact that these will always be
blood-type compatible with their partner in the pair. This is due to the possibility of
positive crossmatches and other compatibilities, and the probability distribution has been
adjusted to reflect this concern. Thus, the below represents a slight modification of the
general American population’s blood type distribution, reflecting the lower probability
that we see AB patients or O donors.

Patient Donor
AB 1% 5%
A 41% 51%
B 12% 14%
O 46% 30%

Table 1: Distribution of donor and patient blood type

Seven patient-donor pairs were generated per round with an expected 0.7 altruistic donors
generated per round as well; these figures were selected to accurately reflect the small
proportion of altruistic donors in the population while still allowing for the presence of
altruistic donors to meaningfully affect the simulation.

§3.1.3 Death Probability Generation

For each patient-donor node in our graph, the patient is associated with a probability of
dying in the current round. The initial probabilities of death are generated according to
a modified Normal distribution. To ensure that the death probabilities are in between 0
and 1, we randomly sample from our normal distribution until the probability is valid,
meaning that the true distribution of death probabilities is right-skewed and no longer
normal. This initial probability evolves according to the following assumption.

Assumption 3.1 (Evolution of Death Probabilities)

We choose to model the probability that a given kidney patient dies as an exponential
function of time where

dn+t = dn(1.005)
t

where dn represents the probability of death in period n and t is the number of
periods in the future from n.

We assume that altruistic donors will not die over the course of the simulation.
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§3.1.4 Failed Match Probabilities

Each edge in our compatibility graph is associated with some probability of failure. For
our simulations, this probability is fixed to some constant value, though our code allows
for non-constant failure probabilities.

§3.1.5 Compatibility Graph Generation and Matching

The simulation proceeds for a specified number of rounds. New agents are generated
each round as described in 3.1.2. Agents are removed from the pool either when they die
or when they receive a successful transplant.

At the beginning of each round, any operations from the previous round are checked to see
if they are successful. From the pool of patients awaiting a kidney, deaths are simulated
according to each patient’s probability of death. Any dead patients are removed from
the pool. A compatibility graph is generated given the current pool of patients and
optimal cycles/chains are selected according to the algorithm in question. These cycles
and chains are noted for operation in the next round. This process repeats for the given
number of rounds, tracking successful transplants and deaths along with other relevant
statistics.

§3.1.6 Default Parameters

Throughout the experiments we run, we vary three parameters – the number of rounds
in the kidney exchange, the universal probability of a failed match, and the probability
distribution of death rates facing patients. Each of these parameters is varied in isolation
while the other two are kept at the default values. The default values are reported below.

• Total Number of Rounds: 36

• Initial Death Probability Distribution: de ∼ N (0.02, 0.02)

• Failed Match Probability: 0.7

where the failed match probability of 0.7 is taken from Dickerson et al. [3] The initial
death probabilities might seem low, but under these defaults, the probability of any
patient surviving for 36 consecutive rounds without a transplant is roughly approximated
by (1− 0.02)36 ≈ 0.5.

§3.2 Experimental Parameters

§3.2.1 Algorithms Under Consideration

We run each experiment with four different algorithms.

• UEF: This is the unextended edge formulation for the kidney matching problem,
placing no restrictions on chain or cycle length.

• PICEF: This is the position-indexed chain-edge formulation, a formulation
developed to allow for more compact representations of chains in the model. [1] We
cap cycle length at 3 and chain length at 20.

• FR-PICEF: This is a failure-robust/failure-aware implementation of PICEF a-la
Dickerson et al. and explained in Section 2.
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• FRLA: Finally, we have FRLA which we run by modifying FR-PICEF and
weighting each edge according to the probability that the patient on the terminal
node dies in the current round.

§3.2.2 Relevant Metrics

We evaluate each algorithm on three key metrics.

• Successful Transplants: This is the typical benchmark for kidney matching
algorithms.

• Deaths: As people die in our exchange, these deaths are tracked and reported for
each simulation.

• Saved Lives: This is a counterfactual implemented into our simulation – we
continue to simulate the probability of death for those who have received successful
transplants and keep track of whether they would eventually have died throughout
all rounds of the simulation. We then count how many agents who would have
otherwise died received a successful transplant before death, representing our metric
for the number of lives saved by an algorithm.

§3.3 Experiment 1: Number of Rounds

In this experiment, we vary the total number of rounds we run the simulation for. We
test seven different values for the total number of rounds – 12, 18, 24, 30, 36, 42, 48. Ten
simulations are performed for each algorithm at each value, and averages and standard
deviations are collected. Below are the graphs displaying the results from the simulations
for each relevant metric.

Figure 1: Total transplants (left), deaths (right), and lives saved (bottom) plotted against
the number of rounds in the simulation
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As the number of rounds increases, the differences in performance between the four
algorithms become more clear. Most clear is UEF’s very poor performance, completing
only 20 transplants and saving only 10 lives over 48 rounds compared to the 160 and
60 of FRLA. UEF struggles in this failure-aware environment precisely because of the
unrestricted nature of its formulation – it favors long cycles and chains to shorter ones,
and these longer dependencies are much more likely to fail than the typical 2-cycles
formed in failure-aware PICEF or FRLA.

Both failure-aware algorithms perform better than their failure-ignorant counterparts,
resulting in more transplants, fewer deaths, and more lives saved. Note that while FRLA
clearly outperforms failure-aware PICEF in terms of deaths and lives saved, it does
not result in significantly more transplants. This is related to the different objective
functions of the two algorithms – unlike failure-aware PICEF, FRLA does not maximize
the number of transplants; instead, it minimizes deaths and maximizes lives saved.

The trends in this graph suggest that with an increasing number of rounds, differences
between the two algorithms will become increasingly more apparent. The error bars for
this graph are rather large, indicating high variance in our results. Unfortunately, we
were only able to run 10 simulations at each value due to computational constraints, but
we would expect that taking a larger sample would result in more precise estimates. The
same will hold true for the following two experiments.

§3.4 Experiment 2: Universal Failure Probabilities

In this experiment, we vary the uniform failure probability associated with each edge.
We test four different values of this universal failure probability – 0.3, 0.5, 0.7, 0.9. Ten
simulations are performed for each algorithm at each value, and averages and standard
deviations are collected. Below are the graphs displaying the results from the simulations
for each relevant metric.

Figure 2: Total transplants (left), deaths (right), and lives saved (bottom) plotted against
varying failure probabilities
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Intuitively, we expect that larger failure rates will result in larger differences between
the failure-aware algorithms and their failure-ignorant counterparts. The above graphs
demonstrate that this is at least partially true; failure rates of 0.5 and 0.7 result in
substantially more difference between UEF and the other algorithms than a failure rate
of 0.3. However, for a sufficiently high failure rate of 0.9, the performance of all four
algorithms deteriorates dramatically due to the extreme difficulty of having a successful
transplant.

Perhaps most interesting to note here is that PICEF and failure-aware PICEF do not
seem to be significantly different, even at high failure rates. This is likely due to the fact
that we capped the length of cycles at 3 for PICEF, meaning that it very cannot fall
into the same trap as UEF of creating very long cycles. As any 2-cycles have the same
probability of failing, so long as PICEF primarily selects 2-cycles, it is not substantively
different from failure-aware PICEF. Introducing non-uniform failure probabilities would
likely make these differences more apparent.

Corroborating our results from experiment 1, FRLA continues to outperform PICEF and
failure-aware PICEF in terms of the total number of lives saved and the total number of
deaths among patients in the exchange. However, these advantages are observed to be
most drastic when the failure rate is in between 0.5 and 0.7. A threshold of 0.9 results in
almost all proposed transplants failing, leading to very little differentiation between any
of the four algorithms. Seeing as Dickerson et al. estimate the probability of a positive
crossmatch to be around 0.7 from the UNOS data, it is unlikely that such a high failure
rate holds in practice.

Another interesting observation to note is FRLA’s behavior with low failure rates of 0.3
or 0.5. Here, it results in fewer total transplants than both other versions of PICEF, but
it nonetheless continues to result in fewer deaths and more lives saved. As mentioned
briefly in 3.3, this represents the implicit trade-off FRLA makes when determining
optimal cycles/chains; FRLA will prefer having fewer total transplants so long as it picks
high-value transplants expected to save a significant number of lives.

§3.5 Experiment 3: Initial Death Probability Distributions

In our final experiment, we vary the initial distribution of death probabilities among
patients. We test four different initial normal distributions – N (0.01, 0.01),N (0.02, 0.02),
N (0.03, 0.03),N (0.04, 0.04). Recall that these do not reflect the true initial distributions
due to the requirement that generated probabilities lie in the interval [0, 1], but they
serve as a relative proxy for the true distribution’s mean and variance. Ten simulations
are performed for each algorithm at each value, and averages and standard deviations
are collected. Below are the graphs displaying the results from the simulations for each
relevant metric.
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Figure 3: Total transplants (left), deaths (right), and lives saved (bottom) plotted against
varying death rates

Intuitively, we expect that higher initial probabilities of death will lead to FRLA more
clearly outperforming the other algorithms in terms of the number of lives saved and
the total number of deaths in the exchange. This is in fact confirmed by the results of
the experiment. With an initial N (0.01, 0.01) distribution, differences between all three
non-UEF algorithms in saved lives and deaths are negligible – few people die and few
lives are saved.

However, at an initial N (0.04, 0.04) distribution, FRLA dramatically outperforms its
two PICEF counterparts, saving 50 lives compared to the 40 of failure-aware and regular
PICEF. Fewer deaths are also recorded. This represents a 25% increase in saved lives;
if we consider this on a larger scale, such an increase could save hundreds and perhaps
thousands of lives.

The reason for these increases can largely be explained by the increasing variance of death
probabilities among the distribution. When death probabilities do not vary significantly,
FRLA’s outperformance is only minor – any transplant is roughly the same in the
expected number of deaths it prevents, so FRLA operates much like failure-aware PICEF.
However, with a larger variance in death probabilities, FRLA is able to more clearly pick
out those patients who are in severe need of a kidney – prioritizing them for transplants
and resulting in significantly more saved lives.

If we expect large variance among the severity of patients’ conditions in the real world,
this experiment seems to suggest that FRLA provides meaningful advantages over other
algorithms that are not longevity-aware. In one sense, FRLA is allocatively efficient in
this way, allocating transplants to those who are most in need of them or those who
desire them most.
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§4 Website and Visualizations

In addition to our empirical findings, we also created visualizations of the evolution of
kidney matching networks in JavaScript using D3. Along with a more visual presentation
of our results through interactive scatterplots and bargraphs, these example network
visualizations can be found on our website.

§5 Conclusions

FRLA is designed to approach kidney matching with the goal of minimizing the number of
deaths in the network, in contrast to the typical objective of maximizing the total number
of transplants. It does so by maximizing the number of expected deaths prevented through
transplants, allowing patients more likely to die to receive kidneys sooner. The theoreti-
cal properties of FRLA are examined, and FRLA is designed precisely to achieve this goal.

We find that simulations support the theory behind FRLA, suggesting that there are
meaningful benefits to implementing FRLA, with more lives saved and fewer deaths
reported in the exchange. The benefits of FRLA increase as the distribution of death
probabilities among patients in the exchange becomes wider, representing more variance
in the severity of the patients’ conditions. Additionally, longer simulations result in larger
benefits to implementing FRLA. Higher failure probabilities have little effect on FRLA’s
relative performance, though we do see deterioration among all four tested algorithms at
sufficiently high rates of failure.

As one would expect from its design, FRLA does not result in significantly more trans-
plants than failure-aware matching or capped PICEF matching, and there are times
when fewer total transplants are recorded – dependent on the priorities of the exchange,
this could be a concern associated with implementing FRLA.

§6 Future Work

While the initial experimental results of FRLA are promising, there are several different
directions for further research. Most clearly, there is a need for further simulation,
likely with larger sample sizes to reduce the variances in our results. More experiments
would be welcome as well. What happens when you introduce non-uniform edge failure
probabilities – is FRLA robust to such modifications, and is the algorithm still computa-
tionally feasible? What would happen if failure and death probabilities are correlated,
as one might expect with especially weak patients who might struggle to receive a kidney?

Questions of ethics and fairness are also at the forefront of the FRLA algorithm. In
prioritizing patients with high probabilities of dying, we risk forcing patients with less
severe conditions to wait in the exchange for a much longer time compared to their
counterparts with more severe need for a kidney. For these less at-risk patients, waiting
time is especially high, and if we feel that each person should have an equal chance to
receive a kidney, important ethical questions are raised. Additionally, a more precise
investigation into the waiting time of patients under the FRLA algorithm would be
welcome; the question of waiting time has already been studied in the literature [4], so it
would be interesting to see how it applies here.
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Finally, we are interested in how myopic and static matching compare under the FRLA
algorithm. Is it possible that matching intermittently rather than every round yields fewer
deaths and more saved lives? Assigning potentials to particularly useful edges/nodes has
been experimented within the literature [2], and it would be interesting to see how those
potentials would interact with the FRLA algorithm – could one perhaps incorporate
these longevity concerns into these potentials?
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Figures

To view figures from this paper in higher resolution, you can go to this Github link. You
can also view interactive figures on our website.
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